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1. Introduction

A central problem of string theory is to find compactifications whose low-energy effective

action reproduces the standard model of elementary particle physics. One of the most

promising candidates for this task is the compactification of heterotic string theory on a

Calabi-Yau manifold [1]. In particular, the so-called “non-standard embedding” of E8×E8

heterotic strings has been a very fruitful approach to string phenomenology [2 – 8].

For a number of reasons, the most successful models of this type to date are based

on non-simply connected Calabi-Yau threefolds. These manifolds admit discrete Wilson

lines which, together with a non-flat vector bundle, play an important role in breaking the

heterotic E8 gauge theory down to the standard model [9 – 16]. In addition, they project

out many unwanted fields which would otherwise give rise to exotic matter representa-

tions and/or additional replicas of standard model fields. In particular, one can use this

mechanism to solve the doublet-triplet splitting problem [17, 18]. Finally, the non-simply

connected threefolds have many fewer moduli as compared to their simply connected cover-

ing spaces [19]. In recent work [20 – 23], three generation models with a variety of desirable

features were introduced. These are based on a certain quotients of a Schoen Calabi-Yau

threefold, yielding a non-simply connected Calabi-Yau manifold.

The ultimate goal is to compute all of the observable quantities of particle physics, in

particular gauge and Yukawa couplings, from the microscopic physics of string theory [24 –

27]. There are many issues which must be addressed to achieve this goal. Physical Yukawa

couplings, for example, depend on both coefficients in the superpotential and the explicit

form of the Kähler potential. In a very limited number of specific geometries [24, 28 – 30],

the former can be computed using sophisticated methods of algebraic geometry, topological

string theory and the like. For the latter, one is usually limited to the qualitative statement

that a coefficient is “expected to be of order one”. Improving our computational abilities

and extending these calculations to non-standard embedding has been an outstanding

problem [1].

Recently [31, 32], a plan has been outlined to analyze these problems numerically, at

least in the classical limit. The essential point is that, today, there are good enough algo-

rithms and fast enough computers to calculate Ricci-flat metrics and to solve the hermitian

Yang-Mills equation for the gauge connection directly. Given this data, one can then find

the correctly normalized zero modes of fields, determine the coefficients in the superpoten-

tial and compute the explicit form of the Kähler potential. Some progress in this direction

was made in [31 – 35] and also [36 – 38]. Making effective use of symmetries [39, 40], one can

significantly improve the computational procedure to find Calabi-Yau metrics and further

extend it to non-simply connected manifolds. In this work, we take one step further in the

numerical approach to string theory compactification and present an explicit algorithm to

numerically solve for the eigenvalues and eigenfunctions of the scalar Laplace operator. We

use as one of the inputs the Calabi-Yau metrics computed using the techniques developed

in [40].

We start, in 3, by discussing the general idea of the method and list the key steps

of our algorithm. This algorithm is then applied to the simplest compact threefold, the
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projective space P3. This threefold is, of course, not a Calabi-Yau manifold. However, in has

the advantage of being one of the few manifolds where the Laplace equation can be solved

analytically. We compare the numerical results of this computation with the analytical

solution in order to verify that our implementation is correct and to understand the sources

of numerical errors. We note that the multiplicities of the approximate eigenvalues are

determined by the dimensions of corresponding irreducible representations of the symmetry

group of the projective space, as expected from the analytical solution. We conclude the

section by investigating the asymptotic behavior of the numerical solution and comparing

it with Weyl’s formula.

Having gone through this illustrative example, we apply our numerical procedure to

Calabi-Yau quintic threefolds in 4. The eigenvalues and eigenfunctions are explicitly com-

puted for both a quintic at a random point in moduli space as well as for the Fermat quintic.

We can again explain the multiplicities of eigenvalues on the Fermat quintic as arising from

its enhanced symmetry; here, however, being a finite isometry group. The asymptotics of

the numerical solution is verified using Weyl’s formula. Note that the eigenvalues and eigen-

functions are not known analytically in the Calabi-Yau case, so our numerical algorithm

is essential for their calculation. Recently, Donaldson has proposed a different algorithm

to solve for the spectrum1 of the scalar Laplacian. At the end of the section, we use it to

numerically compute the eigenvalues and eigenfunctions on a random quintic and on the

Fermat quintic and compare these to our results. In 5, we consider non-simply connected

Calabi-Yau manifolds, namely Z5 × Z5 quotients of certain quintic threefolds. The eigen-

values and eigenfunctions of the Laplacian are numerically computed using our algorithm,

exploiting the Hironaka decomposition discussed in our previous paper [40]. In this case,

the multiplicities of the eigenvalues are determined by finite “pseudo-symmetries” [41]. We

work out the necessary representation theory and again find perfect agreement with the

multiplicities predicted by our numerical computation of the eigenvalues. We conclude this

section by studying the moduli dependence of the eigenvalues for a one-parameter families

of quintic quotients.

In 6, we apply this machinery to the case of a certain Z3 × Z3 quotient of a Schoen

threefold [42, 43]. This is the Calabi-Yau threefold underlying the heterotic standard model

constructed in [21 – 23]. The essential new feature is the existence of non-trivial Kähler

moduli, not just the overall volume of the threefold as in all previous sections. As an

explicit example, we numerically compute the eigenvalues of the Laplacian at two different

points in the Kähler moduli space, corresponding to distinct “angular” directions in the

Kähler cone. The group representation theory associated with the covering space and the

quotient is discussed.

We conclude in 7 by considering some physical applications of the eigenvalues of the

scalar Laplacian on a Calabi-Yau threefold. In particular, we consider string compactifica-

tions on these backgrounds and study the effect of the massive Kaluza-Klein modes on the

static gravitational potential in four-dimensions. We compute this potential in the case of

the Fermat quintic, and explicitly show how the potential changes as the radial distance

1The spectrum of an operator is the set of eigenvalues.
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approaches, and passes through, the compactification scale. We then give a geometrical

interpretation to the eigenvalue of the first excited state in terms of the diameter of the

Calabi-Yau manifold. Inverting this relationship allows us to calculate the “shape” of the

Calabi-Yau threefold from the numerical knowledge of its first non-trivial eigenvalue.

Additional information is provided in three appendices. We explicitly determine the

first massive eigenvalue for the Laplacian P3 in A. Some technical aspects of semidirect

products, which are useful in understanding 4, are discussed in B. Finally, in C, we explain a

modification of Donaldson’s algorithm for the numerical computation of Calabi-Yau metrics

on quotients, which is used 5.

2. Solving the Laplace equation

Consider any d-dimensional, real manifold X. We will only be interested in closed mani-

folds; that is, compact and without boundary. Given a Riemannian metric2 gµν on X, the

Laplace-Beltrami operator ∆ is defined as

∆ = − 1√
g
∂µ(g

µν√g∂ν) = −δ d= − ∗ d∗d , (2.1)

where g = det gµν . Since this acts on functions, ∆ is also called the scalar Laplace operator.

We will always consider the functions to be complex-valued. Since ∆ commutes with

complex conjugation, the scalar Laplacian acting on real functions would essentially be the

same.

An important question is to determine the corresponding eigenvalues λ and the eigen-

functions φ defined by

∆φ = λφ. (2.2)

As is well-known, the Laplace operator is hermitian. Due to the last equality in eq. (2.1),

all eigenvalues are real and non-negative. The goal of this paper is to find the eigenvalues

and eigenfunctions of the scalar Laplace operator on specific manifolds X with metrics gµν .

Since X is compact, the eigenvalues of the Laplace operator will be discrete. Let us

specify the n-th eigenvalue by λn. Symmetries of the underlying manifold will, in general,

cause λn to be degenerate; that is, to have multiple eigenfunctions. We denote by µn the

multiplicity at level n. Each eigenvalue depends on the total volume of the manifold. To

see this, consider a linear rescaling of distances; that is, let gµν 7→ ρ2gµν . Clearly,

Vol
(
ρ2gµν

)
= ρdVol

(
gµν
)
, λn

(
ρ2gµν

)
= ρ−2λn

(
gµν
)
. (2.3)

Therefore, each eigenvalue scales as

λn ∼ Vol−
2
d . (2.4)

In the following, we will always normalize the volume to unity when computing eigenvalues.

2We denote the real coordinate indices by µ, ν, . . . .
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Now consider the linear space of complex-valued functions on X and define an inner

product by

〈e|f〉 =

∫

X
ēf

√
g ddx, e, f ∈ C∞(X,C). (2.5)

Let {fa} be an arbitrary basis of the space of complex functions. For reasons to become

clear later on, we will primarily be working with bases that are not orthonormal with

respect to the inner product eq. (2.5). Be that as it may, for any complex function e one

can always find a function ẽ so that

e =
∑

a

fa〈fa|ẽ〉. (2.6)

Given the basis of functions {fa}, the matrix elements ∆ab of the Laplace operator are

∆ab =
〈
fa
∣∣∆
∣∣fb
〉

=

∫

X
f̄a∆fb

√
gddx = −

∫

X
f̄a d∗dfb =

∫

X

〈
dfa
∣∣ dfb

〉

=

∫

X
gµν
(
∂µf̄a

)(
∂νfb

) √
gddx.

(2.7)

Thus far, we have considered arbitrary d-dimensional, real manifolds X and any Rie-

mannian metric gµν . Henceforth, however, we restrict our attention to even dimensional

manifolds that admit a complex structure preserved by the metric. That is, we will assume

that X is a D = d
2 -dimensional complex manifold with an hermitian3 metric4 gī defined

by

gµν dxµ ⊗ dxν =
1

2
gī
(
dzi ⊗ dz ̄ + dz ̄ ⊗ dzi

)
. (2.8)

With X so restricted, it follows that

gµν∂µf̄a ∂νfb = 2gı̄j
(
∂ ı̄ f̄a ∂jfb + ∂j f̄a ∂ ı̄fb

)
(2.9)

and, hence,

∆ab = 2

∫

X
gı̄j
(
∂ ı̄ f̄a ∂jfb + ∂j f̄a ∂ ı̄fb

)
det(g)

(
i
2

)D D∏

r=1

dzr ∧ dz̄r̄. (2.10)

Using this and eq. (2.6) for each eigenfunction φn,i, eq. (2.2) becomes

∑

b

〈
fa
∣∣∆
∣∣fb
〉
〈fb|φ̃n,i〉 =

∑

b

λn〈fa|fb〉〈fb|φ̃n,i〉, i = 1, . . . , µn. (2.11)

Thus, in the basis {fa}, solving the Laplace eigenvalue equation is equivalent to the gener-

alized eigenvalue problem for the infinite dimensional matrix ∆ab, where the matrix 〈fa|fb〉
indicates the “non-orthogonality” of our basis with respect to inner product eq. (2.5).

In general, very little known about the exact eigenvalues and eigenfunctions of the

scalar Laplace operator on a closed Riemannian manifold X, including those that are

3In particular, Kähler metrics are hermitian.
4We denote the holomorphic and anti-holomorphic indices by i, ı̄ , j, ̄, . . . .
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complex manifolds with hermitian metrics. The universal exception are the zero modes,

where the multiplicity has a cohomological interpretation. Specifically, the solutions to

∆φ = 0 are precisely the locally constant functions and, hence, the multiplicity of the zero

eigenvalue is

µ0(X) = h0
(
X,C

)
=
∣∣π0(X)

∣∣, (2.12)

the number of connected components of X. Furthermore, on symmetric spaces G/H one

can completely determine the spectrum of the Laplace operator in terms of the represen-

tation theory of the Lie groups G and H. Indeed, in the next section we will discuss one

such example in detail. However, in general, and certainly for proper Calabi-Yau three-

folds, exact solutions of ∆φ = λφ are unknown and one must employ numerical methods to

determine the eigenvalues and eigenfunctions. The purpose of this paper is to present such

a numerical method, and to use it to determine the spectrum of ∆ on physically relevant

complex manifolds. Loosely speaking, the algorithm is as follows.

First, we specify the complex manifold X of interest as well as an explicit hermitian

metric. For Kähler manifolds, the Fubini-Study metric can always be constructed. How-

ever, this metric is never Ricci-flat. To calculate the Ricci-flat Calabi-Yau metric, one

can use the algorithm presented in [31, 33] and extended in [40]. This allows a numerical

computation of the Calabi-Yau metric to any desired accuracy. Giving the explicit metric

completely determines the Laplace operator ∆. Having done that, we specify a countably

infinite set {fa} that spans the space of complex functions. One can now calculate any

matrix element ∆ab = 〈fa|∆|fb〉 and coefficient 〈fa|fb〉 using the scalar product specified

in eq. (2.5) and evaluated using numerical integration over X. As mentioned above, the

most convenient basis of functions {fa} will not be orthonormal. Clearly, calculating the

infinite dimensional matrices ∆ab and 〈fa|fb〉, let alone solving for the infinite number of

eigenvalues and eigenfunctions, is not possible. Instead, we greatly simplify the problem by

choosing a finite subset of slowly-varying functions as an approximate basis. For simplicity

of notation, let us take {fa|a = 1, . . . , k} to be our approximating basis. The k×k matrices

(∆ab)1≤a,b≤k and 〈fa|fb〉1≤a,b≤k are then finite dimensional and one can numerically solve

eq. (2.11) for the approximate eigenvalues and eigenfunctions. It is important to note that

this procedure generically violates any underlying symmetries of the manifold and, hence,

each eigenvalue will be non-degenerate. Finally, we successively improve the accuracy of

the approximation in two ways: 1) for fixed k the numerical integration of the matrix ele-

ments is improved by summing over more points and 2) we increase the dimension k of the

truncated space of functions. In the limit where both the numerical integration becomes

exact and where k → ∞, the approximate eigenvalues λn and eigenfunctions φn converge

to the exact eigenvalues λ̂m and eigenfunctions φm,i with multiplicity µm. Inspired by our

work on Calabi-Yau threefolds, this algorithm to compute the spectrum of the Laplacian

was recently applied to elliptic curves in [44].

3. The spectrum of ∆ on P3

In this section, we use our numerical method to compute the eigenvalues and eigenfunctions

– 6 –
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of ∆ on the complex projective threefold

P3 = S7
/
U(1) = SU(4)

/
S
(
U(3) × U(1)

)
(3.1)

with a Kähler metric proportional to the Fubini-Study metric, rescaled so that the total

volume is unity. As mentioned above, since this is a symmetric space of the form G/H, the

equation ∆φ = λφ can be solved analytically. The results were presented in [45]. Therefore,

although P3 is not a phenomenologically realistic string vacuum, it is an instructive first

example since we can check our numerical algorithm against the exact eigenvalues and

eigenfunctions. Note that, in this case, the metric is known analytically and does not need

to be determined numerically.

3.1 Analytic results

Let us begin by reviewing the known analytic results [45]. First, recall the Fubini-Study

metric is given by gFS
ī = ∂i∂̄̄KFS with

KFS(z, z̄) =
1

π
ln
(
|z0|2 + |z1|2 + |z2|2 + |z3|2

)
. (3.2)

With respect to this metric the volume of P3 is

VolFS(P3) =

∫

P
3
det
(
gī
)
d6x =

∫

P
3

ω3
FS

3!
=

1

6
, (3.3)

where ωFS is the associated Kähler (1, 1)-form. However, as discussed above, we find it

convenient to choose the metric so as to give P3 unit volume. It follows from eq. (3.2)

and (3.3) that one must rescale the Kähler potential to be

K(z, z̄) =
3
√

6KFS(z, z̄) =
3
√

6

π
ln
(
|z0|2 + |z1|2 + |z2|2 + |z3|2

)
. (3.4)

Then

VolK(P3) = 1 , (3.5)

as desired.

The complete set of eigenvalues of ∆ on P3 were found to be [45]

λ̂m =
4π
3
√

6
m(m+ 3), m = 0, 1, 2, . . . , (3.6)

where we determine the numerical coefficient, corresponding to our volume normalization,

in A. Furthermore, it was shown in [45] that the multiplicity of the m-th eigenvalue is

µm =

(
m+ 3

m

)2

−
(
m+ 2

m− 1

)2

=
1

12
(m+ 1)2(m+ 2)2(2m+ 3). (3.7)

This result for the multiplicity has a straightforward interpretation. As is evident from

the description of P3 in eq. (3.1), one can define an SU(4) action on our projective space.

Thus the eigenstates of the Laplace operator eq. (2.2) carry representations of SU(4). In

– 7 –
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m µm λ̂m

0 1 0

1 15 16π
3√6

≃ 27.662

2 84 40π
3√6

≃ 69.155

3 300 72π
3√6

≃ 124.48

4 825 112π
3√6

≃ 193.64

5 1911 160π
3√6

≃ 276.62

6 3920 216π
3√6

≃ 373.44

7 7344 280π
3√6

≃ 484.09

Table 1: Eigenvalues of ∆ on P3. Each eigenvalue is listed with its multiplicity.

general, any representation of SU(4) is characterized by a three dimensional weight lattice.

In particular, for each irreducible representation there exists a highest weight

w = m1w1 +m2w2 +m3w3, (3.8)

where w1, w2, and w3 are the fundamental weights and m1,m2,m3 ∈ Z≥0. Starting with

the highest weight, one can generate all the states of the irreducible representation. It turns

out that multiplicity eq. (3.7) is precisely the dimension of the irreducible representation

of SU(4) generated by the highest weight m(w1 + w3) = (m, 0,m). Hence, the eigenspace

associated with the m-th eigenvalue λ̂m carries the irreducible representation (m, 0,m) of

SU(4) for each non-negative integer m. For convenience, we list the low-lying eigenvalues

and their corresponding multiplicities in 1.

The eigenfunctions of ∆ on P3 = S7
/
U(1) are the U(1)-invariant spherical harmonics

on S7. In terms of homogeneous coordinates [z0 : z1 : z2 : z3] on P3, the eigenfunctions can

be realized as finite linear combinations of functions of the form5

(
degree kφ monomial

)(
degree kφ monomial

)

(
|z0|2 + |z1|2 + |z2|2 + |z3|2

)kφ
. (3.9)

One can show this as follows. Let 4 and 4 be the fundamental representations of SU(4).

Algebraically, one can show that

Symkφ 4⊗ Symkφ 4 =
⊕kφ

m=0
(m, 0,m), (3.10)

where (m, 0,m) are the irreducible representations of SU(4) defined above. Now note that

C[~z]kφ
, the complex linear space of degree-kφ homogeneous polynomials in z0, z1, z2, z3,

5We label the degree of the monomials here by kφ to distinguish it from the degree kh of polynomials in

Donaldson’s algorithm.
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naturally carries the Symkφ 4 reducible representation of SU(4). Similarly, C[~̄z]kφ
carries

the Symkφ 4 representation. Defining

Fkφ
=

C[z0, z1, z2, z3]kφ
⊗ C[z̄0, z̄1, z̄2, z̄3]kφ(∑3

j=0 |zj |2
)kφ

(3.11)

to be the space of functions spanned by the degree kφ monomials, then it follows from

eq. (3.10) that one must have the decomposition

Fkφ
=

kφ⊕

m=0

span
{
φm,1, . . . , φm,µm

}
, (3.12)

where µm = dim(m, 0,m). Note the importance of the SU(4)-invariant denominator, which

ensures that the whole fraction is of homogeneous degree zero, that is, a function on P3.

To illustrate this decomposition, first consider the trivial case where kφ = 0. Noting

that µ0 = 1, eq. (3.12) yields

φ0,1 = 1, (3.13)

corresponding to the trivial representation 1 of SU(4) and the lowest eigenvalue λ0 = 0.

Now, let kφ = 1. In this case µ0 = 1 and µ1 = 15. It follows from eq. (3.12) that there

must exist a basis of F1 composed of the eigenfunctions of ∆ in the 1 and 15 irreducible

representations of SU(4) respectively. This is indeed the case. We find that one such basis

choice is

φ0,1 =
|z0|2 + |z1|2 + |z2|2 + |z3|2∑3

j=0 |zj |2
= 1, (3.14)

corresponding to the lowest eigenvalue λ0 = 0, and

φ1,1 = z0z̄1

/∑3
j=0 |zj |2 φ1,2 = z1z̄0

/∑3
j=0 |zj |2

φ1,3 = z0z̄2

/∑3
j=0 |zj |2 φ1,4 = z2z̄0

/∑3
j=0 |zj |2

φ1,5 = z0z̄3

/∑3
j=0 |zj |2 φ1,6 = z3z̄0

/∑3
j=0 |zj |2

φ1,7 = z1z̄2

/∑3
j=0 |zj |2 φ1,8 = z2z̄1

/∑3
j=0 |zj |2

φ1,9 = z1z̄3

/∑3
j=0 |zj |2 φ1,10 = z3z̄1

/∑3
j=0 |zj |2

φ1,11 = z2z̄3

/∑3
j=0 |zj |2 φ1,12 = z3z̄2

/∑3
j=0 |zj |2

φ1,13 =
(
z1z̄1 − z0z̄0

)/∑3
j=0 |zj |2

φ1,14 =
(
z2z̄2 − z0z̄0

)/∑3
j=0 |zj |2

φ1,15 =
(
z3z̄3 − z0z̄0

)/∑3
j=0 |zj |2 ,

(3.15)

corresponding to the first non-trivial eigenvalue λ1 = 16π
3√6

. Note that we recover the con-

stant eigenfunction for kφ = 0 through the cancellation of the numerator in eq. (3.14).

This pattern, where one recovers all the lower eigenmodes through the factorization of

– 9 –
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the numerator in each representation by an appropriate power of
∑3

j=0 |zj |2, continues for

arbitrary kφ. In other words, there is a sequence of inclusions

{1} = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ C∞(P3,C
)
. (3.16)

Note that

dimFkφ
=

(
kφ + 3

kφ

)2

, (3.17)

which, together with eq. (3.10), explains the multiplicities given in eq. (3.7).

Although a basis of Fkφ
composed of eigenfunctions of ∆ would be the most natural,

there is no need to go through the exercise of decomposing the space into SU(4)-irreducible

representations. For numerical calculations, it is simpler to use the equivalent basis

Fkφ
= span

{
fa
∣∣ a = 0, . . . ,dimFkφ

− 1
}

= span




(
degree kφ monomial

)(
degree kφ monomial

)/( 3∑

j=0

|zj |2
)kφ





(3.18)

for any finite value of kφ, even though these functions are generically not themselves eigen-

functions of ∆. In the limit where kφ → ∞, the basis eq. (3.18) spans the complete space

of eigenfunctions.

3.2 Numerical results

Following the algorithm presented at the end of the 2, we now numerically solve the eigen-

value problem for the scalar Laplace operator ∆ on P3. Unlike more phenomenologically

interesting Calabi-Yau threefolds, where one must numerically compute the Kähler metric

using Donaldson’s method [31, 33, 40], on P3 the Kähler potential is given by eq. (3.4)

and, hence, the metric and ∆ are known explicitly. This eliminates the need for the first

few steps of our algorithm, greatly simplifying the calculations in this section. Further-

more, the SU(4) action on the eigenfunctions allows us to identify a complete basis for the

space of complex functions in terms of monomials of the form eq. (3.9). Since we know

the exact eigenvalues and eigenfunctions on P3, this is an excellent venue for checking the

numerical accuracy of the remaining steps in our algorithm as well as the correctness of

our implementation.

Given the metric, ∆ and the complete basis of functions, the next step in our algorithm

is to specify an approximating basis for the linear space of complex functions. This is easily

accomplished by restricting to

Fkφ
= span

{
fa

∣∣∣ a = 0, . . . ,
(kφ+3
kφ

)2 − 1
}
, (3.19)

see eq. (3.18), for any finite value of kφ. Next, we need to specify the volume measure in

the integrals required to evaluate the matrix elements 〈fa|∆|fb〉 and 〈fa|fb〉. Each matrix

element requires one integral over P3, as in eq. (2.7). The volume form is completely

determined by the metric to be

dVolK =
1

3!
ω3, (3.20)

– 10 –



J
H
E
P
0
7
(
2
0
0
8
)
1
2
0

where ω is the Kähler (1, 1)-form given by the Kähler potential eq. (3.4). Although P3 is

simple enough to employ more elaborate techniques of integration, we will use the same

numerical integration algorithm as with Calabi-Yau threefolds later on. That is, we ap-

proximate the integral by summing over nφ random points,

1

nφ

nφ∑

i=1

f(pi) −→
∫
f dVol, (3.21)

where f is an arbitrary function on P3. The integration measure dVol in eq. (3.21) is

determined by the distribution of points. In other words, the random distribution of

points must be chosen carefully in order to approximate the integral with our desired

volume form dVolK . However, this can easily be done: simply pick the points in an SU(4)-

uniform distribution. The corresponding integral measure is (up to overall scale) the unique

SU(4)-invariant volume form, the Fubini-Study volume form. The normalization is fixed

by our convention that VolK(P3) = 1.

The process of numerically evaluating integrals by summing over a finite number nφ of

points has one straightforward consequence. As discussed above, in the analytic solution the

m-th eigenvalue λ̂m is degenerate with multiplicity µm given in eq. (3.7). The reason for the

degeneracy is that the m-th eigenspace carries the (m, 0,m) highest weight representation

of SU(4). However, even though the nφ points have an SU(4)-uniform distribution, the

simple fact that they are finite explicitly breaks the SU(4) symmetry. The consequence of

this is that the degeneracy of each eigenvalue is completely broken. It follows that in the

numerical calculation, instead of one eigenvalue λ̂m with multiplicity µm, one will find µm
non-degenerate eigenvalues λn. Only in the limit that nφ → ∞ will these converge to a

single degenerate eigenvalue as

λ0 = λ0, . . . , λµ0−1 → λ̂0 = 0,

λ1, . . . , λ15 = λµ0 , . . . , λµ0+µ1−1 → λ̂1 = 16π
3√6
,

λ16, . . . , λ99 = λµ0+µ1 , . . . , λµ0+µ1+µ2−1 → λ̂2 = 40π
3√6
,

...

(3.22)

We are now ready to numerically compute the finite basis approximation to the Laplace

operator 〈fa|∆|fb〉 and the coefficient matrix 〈fa|fb〉 for any fixed values of kφ and nφ.

The coefficients do not form the unit matrix, indicating that the approximating basis

eq. (3.18) of Fkφ
is not orthonormal. Even though one could orthonormalize the basis, this

would be numerically unsound and it is easier to directly solve the generalized eigenvalue

problem eq. (2.11). We implemented this algorithm in C++. In practice, the most time-

consuming part is the evaluation of the numerical integrals for the matrix elements of the

Laplace operator. We perform this step in parallel on a 10-node dual Opteron cluster, using

MPI [46] for communication. Finally, we use LAPACK [47] to compute the eigenvalues

and eigenvectors. Note that the matrix eigenvectors are the coefficients 〈fa|φ̃〉 and, hence,

– 11 –



J
H
E
P
0
7
(
2
0
0
8
)
1
2
0

0

50

100

150

200

10,000 100,000 1,000,000

0

27.6622

69.1554

124.48λ

nφ

µ0 = 1

µ1 = 15

µ2 = 84

µ3 = 300

Eigenvalues, kφ = 3

Figure 1: Spectrum of the scalar Laplacian on P3 with the rescaled Fubini-Study metric. Here

we fix the space of functions by choosing degree kφ = 3, and evaluate the Laplace operator at a

varying number of points nφ.

the corresponding eigenfunction is

φ =

dimFkφ
−1∑

a=0

fa〈fa|φ̃〉. (3.23)

We present our results in two ways. First fix kφ, thus restricting the total number

of non-degenerate eigenvalues λn to dimFkφ
. These eigenvalues are then plotted against

the number of points nφ that we use to evaluate an integral. For smaller values of nφ,

the eigenvalues are fairly spread out. However, as nφ is increased the eigenvalues break

into distinct groups, each of which rapidly coalesces toward a unique value. One can then

compare the limiting value and multiplicity of each group against the exact analytic result.

We find perfect agreement. To be concrete, let us present the numerical results for the

case kφ = 3. We plot these results in 1. As nφ is increased from 10,000 to 1,000,000,

the dimF3 = 400 eigenvalues λn cluster into 4 distinct groups with multiplicity 1, 15,

84 and 300. These clusters approach the theoretical values of the first four eigenvalues

respectively, as expected. That is, the numerically calculated eigenvalues condense to the
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Figure 2: Spectrum of the scalar Laplacian on P3 with the rescaled Fubini-Study metric. Here

we evaluate the spectrum of the Laplace operator as a function of kφ, while keeping the number of

points fixed at nφ = 100,000. Note that kφ determines the dimension of the matrix approximation

to the Laplace operator.

analytic results for the eigenvalues and multiplicities listed in 1 on page 8. At any nφ, the

eigenfunction φn associated with each λn is evaluated as a sum over the basis functions

{fa|a = 0, . . . , 399}. We do not find it enlightening to present the numerical coefficients.

The second way to present our numerical results is to fix nφ and study the dependence

of the eigenvalues on kφ. As was discussed in 3.1, since the eigenfunctions of the Laplace

operator are linear combinations of the elements of our basis, the accuracy of λn should

not depend on kφ. However, increasing kφ does add higher-frequency functions to the

approximating space of functions. More explicitly, going from kφ to kφ+1 will add an

extra µkφ+1
eigenvalues to the numerical spectrum, corresponding to the dimension of the

(kφ+1, 0, kφ+1) irreducible representation of SU(4). This is exactly the behavior that we

observe in 2.

3.3 Asymptotic behaviour

It is of interest to compare the asymptotic behaviour of the numerical solution to the

theoretical prediction of Weyl’s formula, which determines the asymptotic growth of the
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Figure 3: Check of Weyl’s formula for the spectrum of the scalar Laplacian on P
3 with the rescaled

Fubini-Study metric. We fix the space of functions by taking kφ = 3 and evaluate
λ3

n

n
as a function

of n at a varying number of points nφ. Note that the data used for the eigenvalues is the same as

for kφ = 3 in 1.

spectrum of the scalar Laplace operator. Specifically, it asserts that on a Riemannian

manifold X of real dimension d, the eigenvalues grow as λn ∼ n
2
d for large n. Here it is

important to keep track of multiplicities by including the degenerate eigenvalue multiple

times in the sequence {λn}, as we do in our numerical calculations. The precise statement

of Weyl’s formula is then that

lim
n→∞

λ
d/2
n

n
=

(4π)
d
2 Γ
(
d
2 + 1

)

Vol(X)
. (3.24)

Applying this to P3, which has d = 6 and the volume scaled to VolK(P3) = 1, we find that

lim
n→∞

λ3
n

n
= 384π3. (3.25)

In 3 we choose kφ = 3 and plot λ3
n
n as a function of n for the numerical values of λn,

as well as for the exact values listed in 1. The numerical results are presented for six

different values of nφ. For each value of nφ, as well as for the exact result, the λ3
n
n break

into three groups, corresponding to the first three massive levels with multiplicities 15, 84,
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and 300, respectively. Note that, as nφ gets larger, the numerical results converge to the

exact result. That is, each segment approaches a curve of the form const.
n . Furthermore,

as the number of eigenvalues increase, the end-points of the curves asymptote toward the

Weyl limit 384π3.

4. Quintic Calabi-Yau threefolds

Quintics are Calabi-Yau threefolds Q̃ ⊂ P4. Denote the usual homogeneous coordinates on

P4 by z = [z0 : z1 : z2 : z3 : z4]. A hypersurface in P4 is Calabi-Yau if and only if it is the

zero locus of a degree-5 homogeneous polynomial

Q̃(z) =
∑

n0+n1+n2+n3+n4=5

c(n0,n1,n2,n3,n4)z
n0
0 zn1

1 zn2
2 zn3

3 zn4
4 . (4.1)

By the usual abuse of notation, we denote both the defining polynomial Q̃(z) and the

corresponding hypersurface {Q̃(z) = 0} ⊂ P4 by Q̃. There are
(5+4−1

4

)
= 126 degree-5

monomials, leading to 126 coefficients c(n0,n1,n2,n3,n4) ∈ C. These are not all independent

complex structure parameters, since the linear GL(5,C)-action on the five homogeneous

coordinates is simply a choice of coordinates. Hence, the number of complex structure

moduli of a generic quintic Q̃ is 126 − 25 = 101.

A natural choice of metric on P4 is the Fubini-Study metric gī = ∂i∂̄̄KFS, where

KFS =
1

π
ln

4∑

i=0

ziz̄ı̄ . (4.2)

This induces a metric on the hypersurface Q̃, whose Kähler potential is simply the restric-

tion. Unfortunately, the restriction of the Fubini-Study metric to the quintic is far from

Ricci-flat. Recently, however, Donaldson [31] presented an algorithm for numerically ap-

proximating Calabi-Yau metrics to any desired accuracy. To do this in the quintic context,

one takes a suitable generalization, that is, one containing many more free parameters, of

the Fubini-Study metric. The parameters are then numerically adjusted so as to approach

the Calabi-Yau metric.

Explicitly, Donaldson’s algorithm is the following. Pick a basis for the quotient

C [z0, . . . , z4]k

/〈
Q̃(z)

〉
(4.3)

of the degree-k polynomials on P4 modulo the hypersurface equation. Let us denote this

basis by sα, α = 0, . . . , N(k) − 1 where

N(k) =





(
5+k−1
k

)
0 ≤ k < 5

(
5+k−1
k

)
−
(
k−1
k−5

)
k ≥ 5.

(4.4)

For any given quintic polynomial Q̃(z) and degree k, computing an explicit polynomial

basis {sα} is straightforward. Now, make the following ansatz

Kh,k =
1

kπ
ln

N(k)−1∑

α,β̄=0

hαβ̄sαs̄β̄ (4.5)
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for the Kähler potential. The hermitian N(k)×N(k)-matrix hαβ̄ parametrizes the metric

on Q̃ and is chosen to be the unique fixed point of the Donaldson T-operator

T (h)αβ̄ =
N(k)

VolCY

(
Q̃
)
∫

eQ

sαs̄β̄∑
γδ̄ h

γδ̄sγ s̄δ̄
dVolCY, (4.6)

where

dVolCY = Ω ∧ Ω̄ (4.7)

and Ω is the holomorphic volume form. The metric determined by the fixed point of the

T-operator is called “balanced”. Hence, we obtain for each integer k ≥ 1 the balanced

metric

g
(k)
ī =

1

kπ
∂i∂̄̄ ln

N(k)−1∑

α,β̄=0

hαβ̄sαs̄β̄. (4.8)

Note that they are formally defined on P4 but restrict directly to Q̃, by construction. One

can show [48] that this sequence

g
(k)
ī

k→∞
−−−−→ gCY

ī (4.9)

of balanced metrics converges to the Calabi-Yau metric on Q̃.

It is important to have a measure of how closely the balanced metric g
(k)
ī at a given

value of k approximates the exact Calabi-Yau metric gCY
ī . One way to do this is the

following. Let g
(k)
ī be a balanced metric, ωk the associated (1, 1)-form and denote by

VolK
(
Q̃, k

)
=

∫

eQ

ω3
k

3!
, VolCY

(
Q̃
)

=

∫

eQ
Ω ∧ Ω̄ (4.10)

the volume of Q̃ evaluated with respect to ωk and the holomorphic volume form Ω respec-

tively. Now note that the integral

σk
(
Q̃
)

=
1

VolCY

(
Q̃
)
∫

eQ

∣∣∣∣∣∣
1 −

ω3
k

3!

/
VolK

(
Q̃, k

)

Ω ∧ Ω̄
/

VolCY

(
Q̃
)

∣∣∣∣∣∣
dVolCY (4.11)

must vanish as ωk approaches the Calabi-Yau Kähler form. That is

σk
k→∞−→ 0. (4.12)

Following [33], we will use σk as the error measure for how far balanced metric g
(k)
ī is from

being Calabi-Yau. Finally, to implement our volume normalization we will always scale

the balanced metric so that

VolK
(
Q̃, k

)
= 1 (4.13)

at each value of k.
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4.1 Non-symmetric quintic

In this subsection, we will pick random6 coefficients c(n0,n1,n2,n3,n4) for the 126 different

quintic monomials in the 5 homogeneous coordinates. An explicit example, which we use

for the analysis in this section, is given by

Q̃(z) = (−0.319235 + 0.709687i)z5
0 + (−0.327948 + 0.811936i)z4

0 z1

+ (0.242297 + 0.219818i)z4
0 z2 + · · · + (−0.265416 + 0.122292i)z5

4 . (4.14)

We refer to this as the “random quintic”. Of course, any other random choice of coefficients

would lead to similar conclusions. The polynomial eq. (4.14) completely fixes the complex

structure. Furthermore, the single Kähler modulus determines the overall volume, which

we set to unity.

Using Donaldson’s algorithm [31, 33, 40] which we outlined above, one can compute an

approximation to the Calabi-Yau metric on the quintic defined by eq. (4.14). The accuracy

of this approximation is determined by

• The degree k ∈ Z≥0 of the homogeneous polynomials used in the ansatz eq. (4.5) for

the Kähler potential. To distinguish this degree from the one in the approximation

to the Laplace operator, we denote them from now on by kh and kφ, respectively. In

this section, we will use

kh = 8. (4.15)

Note that the choice of degree kh determines the number of parameters

hαβ̄ ∈ Mat
(
N(kh) ×N(kh),C

)
(4.16)

in the ansatz for the Kähler potential, eq. (4.5). This is why kh is essentially limited

by the available memory. We choose kh = 8 because it gives a good approximation

to the Calabi-Yau metric, see below, without using a significant amount of computer

memory (≈ 7 MiB).

• The number of points used to numerically integrate within Donaldson’s T-operator [33].

To distinguish this number from the number of points used to evaluate the Laplacian,

we denote them by nφ and nh respectively. As argued in [40], to obtain a good ap-

proximation to the Ricci-flat metric one should choose nh ≫ N(kh)
2, where N(kh) is

the number of degree-kh homogeneous monomials in the 5 homogeneous coordinates

modulo the Q̃(z) = 0 constraint, see eq. (4.4). In our computation, we will always

take

nh = 10 ·N(kh)
2 + 50,000. (4.17)

This rather arbitrary number is chosen for the following reasons. First, the leading

term assures that nh ≫ N(kh)
2 by an order of magnitude and, second, the addition

6To be precise, we pick uniformly distributed random numbers on the unit disk {z ∈ C : |z| ≤ 1}.
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of 50,000 points guarantees that the integrals are well-approximated even for small

values of kh. It follows from eq. (4.4) that for kh = 8 we will use

nh = 2,166,000 (4.18)

points in evaluating the T-operator.

Using the Donaldson algorithm with kh and nh given by eqns. (4.15) and (4.18) respectively,

one can now compute a good approximation to the Calabi-Yau metric in a reasonable

amount of time7. The expression for the metric itself is given as a sum over monomials on

Q̃ of degree kh = 8 with numerically generated complex coefficients. It is not enlightening

to present it here. However, it is useful to compute the error measure defined in eq. (4.11)

for this metric. We find that

σ8 ≈ 5 × 10−2, (4.19)

meaning that, on average, the approximate volume form
ω3

8
3! and the exact Calabi-Yau

volume form Ω∧Ω̄ agree to about 5%. Finally, having found an approximation to the Ricci-

flat metric, one can insert it into eq. (2.1) to determine the form of the scalar Laplacian.

We can now compute the spectrum of the scalar Laplace operator as discussed in the

previous section. First, one must specify a finite-dimensional approximation to the space

of complex-valued functions on Q̃. For any finite value of kφ, we choose

Fkφ
= span

{
sαs̄β̄(∑4
i=0 |zi|2

)kφ

∣∣∣∣∣ α, β̄ = 0, . . . , N(kφ) − 1

}
, (4.20)

where {sα|α = 0, . . . , N(kφ)− 1} are a basis for the homogeneous polynomials modulo the

hypersurface constraint

span{sα} = C [z0, . . . , z4]kφ

/〈
Q̃(z)

〉
. (4.21)

Such a basis was already determined during the Donaldson algorithm for the metric, the

only difference being that now the degree is kφ instead of kh. The counting function N(kφ)

is given by eq. (4.4). Clearly,

dimFkφ
= N(kφ)

2. (4.22)

Computing the matrix elements of the Laplace operator requires another numerical

integration which is completely independent of the one in the T-operator. We denote

the number of points in the matrix element integration by nφ, as we did in the previous

section. We first present the resulting eigenvalue spectrum for fixed kφ = 3 plotted against

an increasing number of points nφ. Our results are shown in 4. From eq. (4.4) we see that

N(3) = 35 and, hence, there are 352 = 1,225 non-degenerate eigenvalues λ0, . . . , λ1,224.

Note that for smaller values of nφ the eigenvalues are fairly spread out, and that they

remain so as nφ is increased. This reflects the fact that for any Calabi-Yau manifold there

is no continuous isometry, as there was for the P3. Furthermore, for the random quintic

7That is, within a few hours of “wall” time.

– 18 –



J
H
E
P
0
7
(
2
0
0
8
)
1
2
0

0

50

100

150

200

10,000 30,000 100,000 300,000

λ

nφ

Figure 4: Eigenvalues of the scalar Laplace operator on the same “random quintic” defined in

eq. (4.14). The metric is computed at degree kh = 8, using nh = 2,166,000 points. The Laplace

operator is evaluated at degree kφ = 3 on a varying number nφ of points.

eq. (4.14) there is no finite isometry group either. Therefore, one expects each eigenvalue

to be non-degenerate, and our numerical results are clearly consistent with this. At any

nφ, the eigenfunctions φn are a linear combination of the 1,225 basis functions. We do not

find it enlightening to list the numerical coefficients explicitly.

Note that the accuracy of the numerical integration for the matrix elements8 is not as

crucial as in the T-operator, since we are primarily interested in the low lying eigenvalues

corresponding to slowly-varying eigenfunctions. This is nicely illustrated by 4, where the

eigenvalues rather quickly approach a constant value as we increase nφ, even though nφ ≪
nh. For this reason, nφ = 200,000 gives a sufficiently good approximation and we will use

this value for the reminder of this subsection.

A second way to present our numerical results is to fix nφ and study the dependence of

the eigenvalues on kφ. This is presented in 5. We first note that the number of eigenvalues

8Recall that nh → ∞ is the continuum limit for the numerical integration in the T-operator, and

nφ → ∞ is the continuum limit for the numerical integration determining the matrix elements of the

Laplace operator.
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Figure 5: Eigenvalues of the scalar Laplace operator on a random quintic plotted against kφ. The

metric is computed at degree kh = 8, using nh = 2,166,000 points. The Laplace operator is then

evaluated at nφ = 200,000 points.

indeed grows as N(kφ)
2, as it must. Second, as one expects, the smaller eigenvalues do not

change much as one increases kφ. The higher eigenvalues, however, depend strongly on the

truncation of the space of functions, since their eigenfunctions vary quickly.

Finally, we plot λ3
n/n as a function of n in 6. We see that this ratio does approach

the theoretical value of 384π3 as kφ and n increase. This confirms that the volume nor-

malization in eq. (4.13) is being correctly implemented and that our numerical results are

consistent with Weyl’s formula eq. (3.24).

4.2 Fermat quintic

We repeat the analysis of the previous section for the Fermat quintic defined by

Q̃F (z) = z5
0 + z5

1 + z5
2 + z5

3 + z5
4 . (4.23)

As before, the single Kähler modulus is chosen so that the volume of the Fermat quintic

is unity. Now, however, we are at a different point in the complex structure moduli space,

eq. (4.23) instead of the random quintic eq. (4.14). Hence, we will perform the numerical
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Figure 6: Check of Weyl’s formula for the spectrum of the scalar Laplace operator on a random

quintic. The metric is computed at degree kh = 8, using nh = 2,166,000 points. The Laplace

operator is evaluated at nφ = 200,000 points and degrees kφ = 1, 2, 3. Note that the data for the

eigenvalues is the same as in 5. According to Weyl’s formula, the exact eigenvalues have to satisfy

lim
n→∞

λ3

n/n = 384π3.

integrations now using points lying on a different hypersurface inside P4. Except for using

different points, we compute the Calabi-Yau metric on Q̃F using Donaldson’s algorithm

exactly as in the previous subsection. In particular

• The degree kh ∈ Z≥0 of the homogeneous polynomials used in the ansatz eq. (4.5)

for the Kähler potential is chosen to be

kh = 8. (4.24)

This is the same degree as we used for the random quintic.

• We take the number of points used to numerically integrate Donaldson’s T-operator

to be

nh = 10 ·N(8)2 + 50,000 = 2,166,000 (4.25)

This satisfies the condition that nh ≫ N(kh)
2, ensuring that the numerical integra-

tion is sufficiently accurate.
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Figure 7: Eigenvalues of the scalar Laplace operator on the Fermat quintic. The metric is computed

at degree kh = 8, using nh = 2,166,000 points. The Laplace operator is evaluated at degree kφ = 3

using a varying number nφ of points.

Using kh and nh given by eqns. (4.24) and (4.25) respectively, one can compute an approx-

imation to the Calabi-Yau metric using Donaldson’s algorithm. The numerical expression

for the metric is tedious and will not be presented here. The error measure eq. (4.11) for

this kh = 8 balanced metric is

σ8 ≈ 5 × 10−2. (4.26)

Hence, the approximate volume form
ω3

8
3! and the exact Calabi-Yau volume form Ω ∧ Ω̄

agree to about 5%. The metric determines the scalar Laplacian, eq. (2.1).

To determine the matrix elements of the Laplace operator, one has to select an ap-

proximating basis for the linear space of complex functions on Q̃F , eq. (4.23). For any

finite kφ, we again choose the function space Fkφ
as in eqns. (4.20) and (4.21). This basis

was already determined during the Donaldson algorithm for the metric. Computing the

matrix elements of the Laplace operator requires another numerical integration which is

completely independent of the one in the T-operator. As we did previously, we denote the

number of points in the matrix element integration by nφ.
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We first present the resulting eigenvalue spectrum for fixed kφ = 3 plotted against an

increasing number of points nφ. Our results are shown in 7. Note from eq. (4.22) that

the total number of eigenvalues is given by dimF3 = N(3)2 = 1,225. One immediately

notices a striking difference compared to the analogous graph for the random quintic, 4.

Here, the eigenvalues converge towards degenerate levels. For smaller values of nφ, the

eigenvalues are fairly spread out. However, as nφ is increased the eigenvalues begin to

condense into degenerate levels. Clearly, this must be due to symmetries of the Fermat

quintic. As mentioned above, no Calabi-Yau manifold has a continuous isometry. However,

unlike the random quintic, the Fermat quintic eq. (4.23) does possess a finite isometry

group, which we will specify below in detail. Therefore, the exact eigenvalues of ∆ on

Q̃F should be degenerate with multiplicities given by the irreducible representations of

this finite group. As we will see in 4.3, the numerically computed degeneracies of the

eigenvalues exactly match the irreducible representations of a this finite isometry group.

Again, we do not find it enlightening to present the numerical results for the eigenfunctions.

Moreover, as discussed previously, the accuracy of the matrix element integration for low-

lying eigenvalues need not be as great as for the T-operator. As is evident from 7, a value

of nφ = 500,000 is already highly accurate and we will use this value in the remainder of

this subsection.

A second way to present our numerical results is to fix nφ as in the previous paragraph

and study the dependence of the eigenvalues on kφ. This is presented in 8. We first note

that the number of eigenvalues grows as N(kφ)
2, as it must. Second, as one expects, the

smaller eigenvalues do not change much as one increases kφ, whereas the higher eigenvalues

depend strongly on the truncation of the space of functions. This is also to be expected,

since their eigenfunctions vary quickly.

Third, let us plot λ3
n/n as a function of n in 9. This ratio approaches the theoretical

value of 384π3 as kφ and n increase. This confirms that the volume normalization in

eq. (4.13) is being correctly implemented and that our numerical results are consistent

with Weyl’s formula eq. (3.24).

4.3 Symmetry considerations

Recall from 7 that the eigenvalues of the scalar Laplace operator condense to a smaller

number of degenerate levels as nφ → ∞, that is, in the limit where the numerical integration

becomes exact. The same phenomenon is clearly visible at different values of kφ, see

8. Of course the eigenvalues are never exactly degenerate due to numerical errors, but

counting the nearby eigenvalues allows one to determine the multiplicities. Averaging

over the eigenvalues in each cluster yields an approximation to the associated degenerate

eigenvalue. Using the data from 8, we list the low-lying degenerate eigenvalues and their

multiplicities9 in 2. As discussed previously, multiplicities in the spectrum of the Laplace-

Beltrami operator results must follow from some symmetry. In 3, we saw that the SU(4)

symmetry of P3 leads to degenerate eigenspaces of the scalar Laplacian. However, a proper

Calabi-Yau threefold never has continuous isometries, unlike projective space. Nevertheless,

9Interestingly, the correct multiplicity µ1 = 20 was derived by a completely different argument in [49].
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Figure 8: Eigenvalues of the scalar Laplace operator on the Fermat quintic. The metric is computed

at degree kh = 8, using nh = 2,166,000 points. The Laplace operator is evaluated at nφ = 500,000

points with varying degrees kφ.

m 0 1 2 3 4 5

λ̂m 1.18 × 10−14 41.1 ± 0.4 78.1 ± 0.5 82.1 ± 0.3 94.5 ± 1 102 ± 1

µm 1 20 20 4 60 30

Table 2: The degenerate eigenvalues λ̂m and their multiplicities µm on the Fermat quintic, as

computed from the numerical values calculated with kh = 8, nh = 2,166,000, kφ = 3, nφ = 500,000.

The errors are the standard deviation within the cluster of µn numerical eigenvalues.

a suitable non-Abelian10 finite group action is possible and, in fact, explains the observed

multiplicities, as we now show.

First, note that for each distinct eigenvalue the corresponding space of eigenfunctions

10An Abelian symmetry group would only have one-dimensional representations and, hence, need not

lead to degenerate eigenvalues. Note that any finite group has a finite number of irreducible representations

and, therefore, one expects only a finite number of possible multiplicities for the eigenvalues of the Laplace

operator. This is in contrast to the aforementioned P3 case, where the multiplicities grow without bound.
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Figure 9: Check of Weyl’s formula for the spectrum of the scalar Laplace operator on the Fermat

quintic. The metric is computed at degree kh = 8, using nh = 2,166,000 points. The Laplace

operator is evaluated at nφ = 500,000 points and degrees kφ = 1, 2, 3. Note that the data for the

eigenvalues is the same as in 8. According to Weyl’s formula, the exact eigenvalues have to satisfy

lim
n→∞

λ3

n/n = 384π3.

must form a representation11 of the symmetry group. Clearly, the degeneracies of the

eigenvalues observed in 7 and 8 must arise from an isometry of Q̃F . In fact, the Fermat

quintic does have a large non-Abelian finite symmetry group. To see this, note that the

zero set of eq. (4.23) is invariant under

• Multiplying a homogeneous coordinate by a fifth root of unity. However, not all

(Z5)
5 phases act effectively because the projective coordinates are identified under

the rescaling

[
z0 : z1 : z2 : z3 : z4

]
=
[
λz0 : λz1 : λz2 : λz3 : λz4

]
. (4.27)

Only (Z5)
5
/
Z5 ≃ (Z5)

4 acts effectively.

• Any permutation of the 5 homogeneous coordinates. The symmetric group S5 acts

effectively.

11An actual linear representation, not just a representation up to phases (projective representation).
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d 1 2 4 5 6 8 10 12 20 30 40 60 80 120

# of irreps

in dim d
4 4 4 4 2 4 4 2 8 8 12 18 4 2

Table 3: Number of irreducible representations of Aut(Q̃F ) = Z2 ⋉ Aut(Q̃F ) in each complex

dimension.

• Complex conjugation Z2.

The first two groups act by analytic maps, and together generate the semidirect product

Aut
(
Q̃F
)

= S5 ⋉
(
Z5

)4
(4.28)

of order 75, 000. Our notation and the relevant group theory is discussed in B. The full

discrete symmetry group, including the complex conjugation Z2, is

Aut
(
Q̃F
)

= Z2 ⋉ Aut
(
Q̃F
)

=
(
S5 × Z2

)
⋉
(
Z5

)4
(4.29)

and of order 150,000. Note that even though the Z2 acts as complex conjugation on the

base space, the whole Aut(Q̃F ) acts linearly on the the basis of complex functions on

Q̃F and, hence, on the eigenfunctions. There are 80 distinct irreducible representations

occurring in 14 different dimensions, ranging from 1 to 120. We list them in 3.

We conclude by noting that the multiplicities listed in 2 also occur in 3. That is, the

eigenspaces of the degenerate eigenvalues of the scalar Laplacian on Q̃F , computed using

our numerical algorithm, indeed fall into irreducible representations of the finite symmetry

group
(
S5×Z2

)
⋉
(
Z5

)4
, as they must. This gives us further confidence that our numerical

computation of the Laplacian spectrum is reliable.

4.4 Donaldson’s method

Donaldson [31] conjectured a method to compute the eigenvalues of the scalar Laplace

operator that is completely independent of our approach. His calculation of the spectrum

of the scalar Laplacian is very much tied into his algorithm for computing balanced (Calabi-

Yau) metrics. In our algorithm, on the other hand side, any metric could be used and no

particular simplifications arise just because the metric happens to be balanced or Calabi-

Yau. Because they are so different, it is quite interesting to compare both methods. We

will now review his proposal, and then compare it with our previous computation of the

eigenvalues on the Fermat quintic as well as the random quintic.

In this alternative approach to calculating the spectrum of the Laplace-Beltrami oper-

ator, one first has to run through Donaldson’s algorithm for the metric. In particular, one

had to choose a degree k, fix a basis {sα|α = 0, . . . , N(k) − 1}, and obtain the balanced

metric hαβ̄ as the fixed point of Donaldson’s T-operator. Let us write

(
sα, sβ) =

sαs̄β̄∑
γδ̄ h

γδ̄sγ s̄δ̄
(4.30)
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for the integrand of the T-operator eq. (4.6). Donaldson’s alternative calculation of the

eigenvalues then hinges on the evaluation of the integral

Qαβ̄,γ̄δ = N(k)

∫

X
(sα, sβ)(sγ , sδ) dVolCY, (4.31)

where we again normalize Vol(X) = 1. One can think of Q as a linear operator on the

space of functions12

FD
k = span

{
(sα, sβ)

∣∣∣ 0 ≤ α, β̄ ≤ N(k) − 1
}
, (4.32)

acting via

Q : FD
k → FD

k , (sα, sβ) 7→
∑

Qαβ̄,γ̄δh
γ̄σhτ̄ δ(sσ, sτ ). (4.33)

In [31], Donaldson conjectures that

lim
k→∞

Q = e
− ∆

4π 3
√

N(k) (4.34)

as operators on

lim
k→∞

FD
k = C∞(X,C). (4.35)

For explicitness, let us look in more detail at the individual steps as they apply to any

quintic X = Q̃ ⊂ P4:

1. First, pick a degree k and a basis
{
s0, . . . , sN(k)−1

}
of degree-k homogeneous poly-

nomials modulo the hypersurface equation Q̃ = 0.

2. Compute the Calabi-Yau metric via Donaldson’s algorithm. It is determined by the

N(k) ×N(k) hermitian matrix hαβ̄ .

3. Compute the N(k)4 scalar integrals in eq. (4.31). The numerical integration can be

performed just as in Donaldson’s T-operator, see 4.

4. Compute the N(k)2 ×N(k)2 matrix

QN(k)α+β̄
N(k)γ+δ̄ =

N(kh)−1∑

σ̄,τ=0

Qαβ̄,σ̄τh
γσ̄hτ δ̄ (4.36)

and find its eigenvalues Λn. Note that Qji is not hermitian13 and one should use the

Schur factorization14 to compute eigenvalues.

12Note the similarity with the approximate space of functions Fkφ
used previously, eq. (4.20). When

computing the matrix elements of the Laplace operator directly, the precise form of the denominator is not

overly important as long as it has the correct homogeneous degree, and we always chose (
P

|zj |
2)kφ for

simplicity.
13Q

j
i is, however, conjugate to a hermitian matrix and hence has real eigenvalues.

14Instead of the dqds algorithm we use for computing eigenvalues of hermitian matrices.
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kφ = 3, kh = 3 (low precision metric)
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Figure 10: Donaldson’s method of computing the spectrum (polygon symbols) of the scalar Laplace

operator on the Fermat quintic compared to our direct computation (crosses). Note that the blue

symbols are the highest-accuracy values, respectively. See 4.4 for further discussion.

5. Discard all Λn ≤ 0, these correspond to high eigenvalues of the Laplacian that are

not approximated well at the chosen degree k. The eigenvalues of the scalar Laplace

operator are

λn = −4π 3
√
N(k) ln Λn. (4.37)

We note that, in this approach to the spectrum of the Laplace-Beltrami operator, there is

only one degree k that controls the accuracy of the eigenvalues of the scalar Laplacian and

at the same time the accuracy of the Calabi-Yau metric. In fact, computing the integral

eq. (4.31) at degree k is about as expensive as computing Donaldson’s T-operator at degree

2k. In other words, a general limitation of this approach is that one has to work with a

relatively low precision metric.

In 10 we compare the two approaches for computing the spectrum of the Laplace-

Beltrami operator on the Fermat quintic. We compute the eigenvalues using Donaldson’s

method at degrees k = 1, 2, 3 and evaluate the necessary integral eq. (4.31) using n =

10N(k)2+100,000 points. For comparison, we also plot the eigenvalues obtained by directly

computing the matrix elements of the Laplacian which we always compute at degree kφ = 3
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Figure 11: Donaldson’s method of computing the spectrum (polygon symbols) of the scalar Laplace

operator on the random quintic compared to our direct computation (crosses). Note that the

blue symbols are the highest-accuracy values, respectively. In Donaldson’s method the numerical

integration was performed with n = 10N(k) + 100,000 points. In the direct computation, the

metric was approximated at degree kh = 8 using nh = 2,166,000 points and the Laplace operator

was evaluated at nφ = 500,000 points.

using nφ = 500,000 points. To estimate the effect of the metric on the eigenvalues, we

run our algorithm first with the metric obtain at degree kh = 3 and15 nh = 62250 (bad

approximation to the Calabi-Yau metric, red diagonal crosses) as well as with kh = 8 and

nh = 2,166,000 (good approximation to the Calabi-Yau metric, blue upright crosses). We

find that the eigenvalues do not strongly depend on the details of the metric. Generally,

Donaldson’s method and the direct computation yield very similar results. There is a slight

disagreement for the second and third massive level, where the matrix element calculation

points toward µ2 = 20, µ3 = 4 while Donaldson’s method suggests the opposite order

µ3 = 4, µ4 = 20. We suspect this is to be a numerical error due to the finite degrees and it

would be interesting to go to higher degree in k, kφ, and kh.

Finally, in 11 we repeat this comparison for the quintic eq. (4.14) with random coef-

15The number of points nh is always obtained from the heuristic eq. (4.17).
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ficients. In this case, there are no discrete symmetries and one expects all massive levels

to be non-degenerate. We again find good agreement between the two approaches towards

solving the Laplace equation.

5. Z5 × Z5 quotients of quintics

Thus far, we have restricted our examples to quintic Calabi-Yau threefolds Q̃ ⊂ P4. These

manifolds are simply connected by construction. However, for a wide range of applications

in heterotic string theory we are particularly interested in non-simply connected manifolds

where one can reduce the number of quark/lepton generations as well as turn on discrete

Wilson lines. Therefore, in this section we will consider the free Z5×Z5 quotient of quintic

threefolds, see [40] for more details.

5.1 Z5 × Z5 symmetric quintics and their metrics

Explicitly, the group action on the homogeneous coordinates [z0 : · · · : z4] ∈ P4 is

g1 :
[
z0 : z1 : z2 : z3 : z4

]
−→

[
z0 : e

2πi
5 z1 : e2

2πi
5 z2 : e3

2πi
5 z3 : e4

2πi
5 z4

]
,

g2 :
[
z0 : z1 : z2 : z3 : z4

]
−→

[
z1 : z2 : z3 : z4 : z0

]
.

(5.1)

As we discussed in 4, a generic quintic is a zero locus of a degree-5 polynomial containing

126 complex coefficients. However, only a small subset of these quintics is invariant under

the Z5 × Z5 action above. As we will show below, the dimension of the space of invariant

homogeneous degree-5 polynomials is 6. Taking into account that one can always multiply

the defining equation by a constant, there are 5 independent parameters φ1, . . . φ5 ∈ C.

Thus, the Z5 × Z5 symmetric quintics form a five parameter family which can be written

as

Q̃(z) =
(
z5
0 + z5

1 + z5
2 + z5

3 + z5
4

)

+ φ1

(
z0z1z2z3z4

)

+ φ2

(
z3
0z1z4 + z0z

3
1z2 + z0z3z

3
4 + z1z

3
2z3 + z2z

3
3z4
)

+ φ3

(
z2
0z1z

2
2 + z2

1z2z
2
3 + z2

2z3z
2
4 + z2

3z4z
2
0 + z2

4z0z
2
1

)

+ φ4

(
z2
0z

2
1z3 + z2

1z
2
2z4 + z2

2z
2
3z0 + z2

3z
2
4z1 + z2

4z
2
0z2
)

+ φ5

(
z3
0z2z3 + z3

1z3z4 + z3
2z4z0 + z3

3z0z1 + z3
4z1z2

)
,

(5.2)

where φ1, . . . , φ5 ∈ C are local coordinates on the complex structure moduli space. From

now on, Q̃ ⊂ P4 will always refer to a quintic of this form.

For generic coefficients16 φi, the hypersurface Q̃ is a smooth Calabi-Yau threefold.

Moreover, although the group action eq. (5.1) necessarily has fixed points in P4, these fixed

points do not intersect a generic hypersurface Q̃. Thus the quotient

Q = Q̃
/(

Z5 × Z5

)
(5.3)

16For example, any sufficiently small neighbourhood of (φ1, . . . , φ5) = (0, . . . , 0) ∈ C5. Note that setting

all φi = 0 yields the Fermat quintic eQF , see eq. (4.23).
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is again a smooth Calabi-Yau threefold. As a general principle, we will compute quantities

on the quotient Q by computing the corresponding invariant quantities on the covering

space Q̃. For example, the complex structure moduli space of Q is the moduli space of

Z5 × Z5-invariant complex structures on Q̃. Hence, its dimension is

h2,1(Q) = dimH2,1
(
Q) = dimH2,1

(
Q̃)Z5×Z5 = 5, (5.4)

corresponding to the 5 independent parameters φ1, . . . , φ5 in a Z5 × Z5-invariant quintic

Q̃(z).

In the same spirit, we will compute the Calabi-Yau metric on Q by performing the

analogous computation on the covering space Q̃. To begin, one must choose a degree kh
and determine a basis sα for the corresponding Z5 × Z5-invariant homogeneous degree-kh
polynomials

span{sα} = C[z0, . . . , z4]
Z5×Z5
kh

/〈
Q̃(z)

〉
(5.5)

on Q̃. Note, however, that for any homogeneous degree-kh polynomial pkh
(z)

g1g2g
−1
1 g−1

2

(
pkh

(z)
)

= e2πi
kh
5 pkh

(z) (5.6)

and, hence, the two Z5 generators in eq. (5.1) do not always commute. It follows that for

a space of homogeneous polynomials to carry a linear representation of Z5 × Z5, let alone

have an invariant subspace, their degree kh must be divisible by 5; that is,

kh ∈ 5Z. (5.7)

This can be understood in various ways, and we refer to [40] for more details. Henceforth,

we will assume that eq. (5.7) is satisfied.

The first step in determining the basis of sections {sα} on Q̃ is to find a basis for

the invariant polynomials C[z0, . . . , z4]
Z5×Z5
kh

on P4. Such a basis is given by the Hironaka

decomposition

C[z0, z1, z2, z3, z4]
Z5×Z5
kh

=
100⊕

i=1

ηi C[θ1, θ2, θ3, θ4, θ5]kh−deg(ηi). (5.8)

Here, the θj = θj(z) and ηi = ηi(z) are themselves homogeneous polynomials of various

degrees17. The θ1, . . . , θ5 are called “primary invariants” and the η1, . . . , η100 are called

“secondary invariants”. The primary and secondary invariants are not unique, but one

minimal choice is [40]

θ1 = z5
0 + z5

1 + z5
2 + z5

3 + z5
4

θ2 = z0z1z2z3z4

θ3 = z3
0z1z4 + z3

1z2z0 + z3
2z3z1 + z3

3z4z2 + z3
4z0z3

θ4 = z10
0 + z10

1 + z10
2 + z10

3 + z10
4

θ5 = z8
0z2z3 + z8

1z3z4 + z8
2z4z0 + z8

3z0z1 + z8
4z1z2

(5.9)

17The degrees of the θj , ηi are multiples of 5, of course.

– 31 –



J
H
E
P
0
7
(
2
0
0
8
)
1
2
0

and

η1 = 1,

η2 = z2
0z1z

2
2 + z2

1z2z
2
3 + z2

2z3z
2
4 + z2

3z4z
2
0 + z2

4z0z
2
1 ,

η3 = z2
0z

2
1z3 + z2

1z
2
2z4 + z2

2z
2
3z0 + z2

3z
2
4z1 + z2

4z
2
0z2,

η4 = z3
0z2z3 + z3

1z3z4 + z3
2z4z0 + z3

3z0z1 + z3
4z1z2,

η5 = z5
0z

5
2 + z5

1z
5
3 + z5

2z
5
4 + z5

3z
5
0 + z5

4z
5
1 ,

...

η100 = z30
0 + z30

1 + z30
2 + z30

3 + z30
4 .

(5.10)

For example, the 6-dimensional space of invariant degree-5 homogeneous polynomials on

P4 is

C[z0, z1, z2, z3, z4]
Z5×Z5
5 =

100⊕

i=1

ηi C[θ1, θ2, θ3, θ4, θ5]5−deg(ηi)

= η1θ1C ⊕ η1θ2C ⊕ η1θ3C ⊕ η2C ⊕ η3C ⊕ η4C,

(5.11)

thus proving eq. (5.2).

Using the Hironaka decomposition, we can now determining the basis sα in eq. (5.5) by

modding out the equation Q̃(z) = 0 which defines the covering space. This was discussed

in [40]. The result is that one can simply eliminate the first primary invariant using

θ1 = −φ1θ2 − φ2θ3 − φ3η2 − φ4η3 − φ5η4, (5.12)

yielding

span{sα} =

100⊕

i=1

ηi C[θ2, θ3, θ4, θ5]kh−deg(ηi) (5.13)

where α = 0, . . . , NZ5×Z5(kh) − 1. The number NZ5×Z5(kh) of Z5 × Z5-invariant homoge-

neous degree-kh polynomials modulo Q̃ = 0 was tabulated in [40]. In particular, the first

three values are

NZ5×Z5(0) = 1, NZ5×Z5(5) = 5, NZ5×Z5(10) = 35, (5.14)

which we will use below.

We now have everything in place to compute the metric on Q. First, one specifies the

five complex structure parameters φi which define the Z5 × Z5-symmetric covering space

Q̃. Then, all one has to do is to replace the homogeneous polynomials in the procedure

outlined in 4 by Z5 × Z5-invariant homogeneous polynomials. Donaldson’s algorithm then

calculates the Calabi-Yau metric on the Z5×Z5-symmetric quintic Q̃ and, hence, the metric

on the quotient Q = Q̃
/
(Z5 × Z5). In fact, we use a refinement of this method which is

even more efficient, that is, achieves higher numerical accuracy in less computing time. As

it is not relevant to the spectrum of the Laplace operator, we relegate the details to C.

Henceforth, we will always use the following parameters in the computation of the metric.
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• The degree of the invariant homogeneous polynomials for the Kähler potential is

taken to be

kh = 10. (5.15)

• The number of points used to evaluate the T-operator is

nh = 10 ×
(
# of independent entries in hαβ̄

)
+ 100,000 = 406,250. (5.16)

Note that hαβ̄ , the matrix of free parameters in Donaldson’s ansatz for the metric,

is block diagonal in C. Therefore, the total number of independent entries is in fact

30,625 and not simply NZ5×Z5(10)2 = 1,225.

As always, it is unenlightening to present the numerical result for the approximation to

the Calabi-Yau metric. It is useful, however, to consider the error measure σ10. As an

important example, let us choose as our Calabi-Yau manifold the Z5 × Z5 quotient of the

Fermat quintic Q̃F . The computation of the metric takes about half an hour of wall time,

with the resulting error measure of σ10 = 2.8 × 10−2.

5.2 The laplacian on the quotient

Having computed the Calabi-Yau metric on the quotient Q = Q̃
/
(Z5 × Z5), we now turn

to the calculation of the spectrum of the Laplace-Beltrami operator ∆. To begin, one must

specify a finite-dimensional approximation to the space of complex valued functions on Q.

Note, however, that the scalar functions on Q are precisely the invariant functions on the

covering space Q̃. More formally, an invariant function on Q̃ is of the form q∗f = f ◦ q,
where f is a function on the quotient Q and q : Q̃→ Q is the quotient map. Hence, we will

specify a finite-dimensional approximation to the space of complex-valued Z5×Z5-invariant

functions on Q̃. For any finite value of kφ, we choose

FZ5×Z5
kφ

= span

{
sαs̄β̄(∑4
i=0 |zi|2

)kφ

∣∣∣∣∣ α, β̄ = 0, . . . , NZ5×Z5(kφ) − 1

}
, (5.17)

where {sα} is a basis for the invariant homogeneous polynomials modulo the hypersurface

constraint

span{sα} = C [z0, . . . , z4]
Z5×Z5
kφ

/〈
Q̃(z)

〉
. (5.18)

We already had to determine such a basis while applying Donaldson’s algorithm for the

metric, the only difference now is that the degree is kφ instead of kh. The counting function

NZ5×Z5(kφ) is the same, and some of its values were given in eq. (5.14). Clearly,

dimFZ5×Z5
kφ

=
(
NZ5×Z5(kφ)

)2
. (5.19)

Having specified FZ5×Z5
kφ

, we can now calculate any matrix element on Q simply by

replacing the approximating space of functions on Q by the invariant functions on Q̃ and

integrating over Q̃. For example, the matrix elements of the Laplacian on Q are

∆ab =
〈
fa
∣∣∆
∣∣fb
〉

=

∫

Q
f̄a∆fb dVol(Q) =

1∣∣Z5 × Z5

∣∣

∫

eQ
(q∗f̄a)∆(q∗fb) dVol(Q̃). (5.20)
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Computing the matrix elements requires another numerical integration that is completely

independent of the one in the T-operator. As previously, we denote the number of points

in the matrix element integration by nφ.

Having evaluated the matrix elements, one can now numerically solve the matrix eigen-

value equation eq. (2.11) for the eigenvalues and eigenfunctions of the Laplacian. Note that

the factors of 1
|Z5×Z5| cancel out of this equation, leaving identical eigenvalues and eigen-

functions on Q̃ and Q, respectively. Since the functions in FZ5×Z5
kφ

live on the covering

space, we are actually solving

∆ eQ
φn = λZ5×Z5

n φn, φn ∈ C∞(Q̃,C)Z5×Z5 (5.21)

on Q̃. Note that, as always, the volume measure of the integrals is chosen so that Vol(Q̃) =

1. For the reasons stated above, the invariant eigenfunctions on Q̃ can be identified with the

eigenfunctions of the Laplacian on Q at the same eigenvalue, but with Vol(Q) = 1
|Z5×Z5| =

1
25 . However, since we want to adhere to our convention of normalizing Vol(Q) = 1, we

have to rescale the volume and hence the eigenvalues λZ5×Z5
n . Using eqns. (2.3) and (2.4),

the eigenvalues λn on Q are

λn =
λZ5×Z5
n
3
√

25
. (5.22)

Using this method, one can compute the spectrum of the Laplace-Beltrami operator on the

quotient of any Z5 × Z5 symmetric quintic.

5.3 Quotient of the Fermat quintic

As an explicit example, let us consider the quotient of the Fermat quintic,

QF = Q̃F

/(
Z5 × Z5

)
. (5.23)

We numerically computed the spectrum of the scalar Laplace operator for each of the three

values kφ = 0, 5, 10 using eq. (5.14). The resulting eigenvalues are shown in 12. Note that

we present both the eigenvalues λZ5×Z5
n on Q̃ as well as the normalized eigenvalues λn on

Q defined by eq. (5.22).

We list the numerical values of the first few eigenvalues in 4 and make the following

two observations. First, the lowest eigenvalue λ0 is no longer zero up to machine precision,

as it was in 2. This is so because the constant function is not part of the approximate

space of functions at kφ = 10 and, therefore, the lowest eigenvalue λ0 only approaches zero

as kφ increases. The actual numerical value λ0 ≈ 1.2 gives us an estimate of the error

introduced by truncating the space of functions. Second, the low-lying eigenvalues clearly

form degenerate levels. As usual, the numerical error caused by the truncation of the space

of functions increases as we go to higher eigenvalues. However, the first 16 eigenvalues

are sufficiently well separated that we can conjecture the underlying multiplicities µ. We

list these degeneracies together with the best approximation to the true eigenvalue λ̂ in 4.

Clearly, the degeneracies in the spectrum strongly hint at an underlying symmetry. We

will discuss the associated isometry group in the following subsection.
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Figure 12: Eigenvalues λZ5×Z5

n of the scalar Laplace operator on the Fermat quintic Q̃F acting on

Z5×Z5-invariant eigenfunctions. Up to an overall factor due to our volume normalization, these are

the same as the eigenvalues λn of the scalar Laplace operator on the quotient QF = Q̃F
/
(Z5 ×Z5).

The metric is computed at degree kh = 10 and nh = 406,250 points. The Laplace operator is

evaluated using nφ = 100,000 points.

5.4 Group theory and the quotient eigenmodes

The free Z5 × Z5 action eq. (5.1) is a subgroup of the symmetries of the Fermat quintic,

Z5 × Z5 ⊂ Aut
(
Q̃F
)
, (5.24)

given in eq. (4.29). Naively, one now would like to form the quotient to obtain the remaining

symmetries on QF = Q̃F/(Z5 × Z5). However, the Z5 × Z5 subgroup is not normal, that

is, not closed under conjugation. The only possibility is to form the normal closure18

〈
Z5 × Z5

〉Aut( eQF )
=
{
h−1gh

∣∣∣ g ∈ Z5 × Z5, h ∈ Aut(Q̃F )
}
. (5.25)

The quotient by the normal closure is well-defined, and we obtain

Aut(QF ) = Aut
(
Q̃F
)/〈

Z5 × Z5

〉Aut( eQF )
= D20, (5.26)

18Also called the conjugate closure.
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n λZ5×Z5
n λn = λ

Z5×Z5
n
3√25

λ̂ µ

0 3.586 1.226 λ̂0 = 1.23 µ0 = 1

1 100.7 34.45

λ̂1 = 34.8 ± 0.5 µ1 = 4
2 101.2 34.61

3 101.4 34.68

4 103.9 35.53

5 107.8 36.86
λ̂2 = 37.1 ± 0.4 µ2 = 2

6 109.2 37.36

7 140.50 48.05

λ̂3 = 48.3 ± 0.2 µ3 = 4
8 141.16 48.28

9 141.47 48.38

10 141.78 48.49

11 149.57 51.15 λ̂4 = 51.2 µ4 = 1

12 166.91 57.08
λ̂5 = 57.5 ± 0.6 µ5 = 2

13 169.48 57.96

14 181.00 61.90
λ̂6 = 62.4 ± 0.8 µ6 = 2

15 184.15 62.98

16 191.49 65.48

17 193.55 66.19

18 198.65 67.94
...

...
...

...
...

Table 4: Low-lying eigenvalues of the scalar Laplace operator on QF , the Z5 × Z5-quotient of the

Fermat quintic, computed with kh = kφ = 10, nh = 406,250, nφ = 100,000. The first two columns

are the numerical results. The third column specifies λ̂, the average over the eigenvalues that are

converging to a single degenerate level. The final column counts the multiplicities of each such level.

the dihedral group with 20 elements. However, just looking at the representation theory of

Aut(QF ) is insufficient to understand the multiplicities of the eigenvalues of the Laplacian.

Instead, one must use all of Aut(Q̃F ), even those elements (called “pseudo-symmetries”

in [41]) that do not correspond to symmetries of the quotient QF . On a practical level,

we also note that D20 has only 1- and 2-dimensional irreducible representations and could

never explain the multiplicity µ1(QF ) = 4, for example, listed in 4.

As we discussed in 4.3, the symmetry group of the Fermat quintic has 80 distinct

irreducible representations occurring in 14 different dimensions. Let us label them by

ρd,i, where d is the complex dimension and i = 1, . . . , nd distinguishes the nd different
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d 1 2 4 5 6 8 10 12 20 30 40 60 80 120

nd 4 4 4 4 2 4 4 2 8 8 12 18 4 2

dimZ5×Z5
d 1 2 0 1 2 0 2 4 0 2 0 4 0 4

Table 5: Number nd of distinct irreducible representations of Aut(Q̃F ) in complex dimension d.

We also list the dimension dimZ5×Z5

d of the Z5 × Z5-invariant subspace for each representation, see

eq. (5.29). Note that it turns out to only depend on the dimension d of the representation.

Q̃F −→ QF

µ0(Q̃F ) = 1 −→ µ0(QF ) = 1

µ1(Q̃F ) = 20 −→ 0

µ2(Q̃F ) = 20 −→ 0

µ3(Q̃F ) = 4 −→ 0

µ4(Q̃F ) = 60 −→ µ1(QF ) = 4

µ5(Q̃F ) = 30 −→ µ2(QF ) = 2

Table 6: Projection of the multiplicity of eigenvalues on the Fermat quintic Q̃F to the Z5 × Z5-

quotient QF .

representations in dimension d. Under the Z5 × Z5 quotient

Q̃F −→ QF = Q̃F
/
(Z5 × Z5) (5.27)

all non-invariant eigenfunctions of the Laplacian are projected out and each invariant eigen-

function descends to an eigenfunction on QF . Hence, the degeneracies of the eigenvalues

are counted by the dimension

dim
(
ρZ5×Z5
d,i

)
(5.28)

of the Z5 × Z5-invariant subspace. It turns out that, for the chosen Z5 × Z5 ⊂ Aut(Q̃F ),

this dimension depends only on d, and not on the index i. We denote the common value

by

dimZ5×Z5
d = dim

(
ρZ5×Z5
d,1

)
= · · · = dim

(
ρZ5×Z5
d,nd

)
(5.29)

and tabulate it in 5.

Using this and the multiplicities of the eigenvalues on the Fermat quintic Q̃F given

in 2, we can now perform the Z5 × Z5-quotient and obtain the degeneracies of the scalar

Laplacian on the QF . The results are listed in 6. We find complete agreement with the

spectrum found by directly computing the eigenvalues on QF given in 4. Naturally, this

comparison is limited by the number of eigenvalues we were able to compute on Q̃F . The

agreement of the lower lying levels, however, gives us confidence that the values of λ̂m and

µm for m = 3, 4, 5, 6, . . . given in 4 are also a good approximation to the exact results on

the quotient.
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5.5 Varying the complex structure

To numerically compute any metric-dependent quantity on a Calabi-Yau manifold, one

has to fix the complex structure and Kähler moduli to specific values. This was done, for

example, in 5.3, where the moduli were chosen so that the covering space was the Fermat

quintic with unit volume. In this section, we will extend our results to the one-parameter

family of Z5 × Z5 symmetric quintics Q̃ψ defined by the vanishing of the polynomial

Q̃ψ =
∑

z5
i − 5ψ

∏
zi. (5.30)

The Kahler modulus will always be fixed so that the volume of Q̃ψ is unity. The complex

structure parameter ψ can, in principle, take on any complex value. However, for simplicity,

we will only consider ψ ∈ R in this subsection. Note that each Q̃ψ is indeed a quintic with

the free Z5 × Z5 symmetry in eq. (5.2). Hence, the quotient

Qψ = Q̃ψ

/(
Z5 × Z5

)
(5.31)

is a smooth Calabi-Yau threefold.

We have computed the spectrum of the scalar Laplace operator on this one-parameter

family of quotients for various values of ψ. The resulting ψ-dependent spectrum can be

found in 13. Note that this one-parameter family of Z5 × Z5-symmetric quintics passes

through two special points,

ψ = 0: Without the
∏
zi term, Q̃ψ=0 = Q̃F is exactly the Fermat quintic. We will inves-

tigate the symmetry enhancement at this point in the next subsection.

ψ = 1: This is the so-called conifold point, where the quintic is singular. On the covering

space Q̃ψ=1 ⊂ P4, the singularity is at

zC =
[
1 : 1 : 1 : 1 : 1] (5.32)

and its images under the Z5 ×Z5 symmetry group. At these points the hypersurface

equation fails to be transversal,

∂Q̃ψ=1

∂z0
(zC) = · · · =

∂Q̃ψ=1

∂z4
(zC) = Q̃ψ=1(zC) = 0, (5.33)

causing the singularity.

Perhaps surprisingly, the spectrum of the scalar Laplace operator shows no trace of the

conifold singularity at ψ = 1. However, the reason for this is straightforward. The low-

lying modes are slowly-varying functions and, in particular, are almost constant near any

point-like singularity. For example, the first massive eigenvalue is essentially determined

by the diameter of the manifold, see 7.2, and does not depend on local details of the metric.
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Figure 13: Spectrum of the scalar Laplace operator on the real 1-parameter family Qψ of quintic

quotients. The metric is computed at degree kh = 10 with nh = 406,250. The Laplace operator is

evaluated at kφ = 10 and nφ = 50,000 points.

5.6 Branching rules

Let us return to spectrum of the Laplace-Beltrami operator in 13 and focus on the neigh-

bourhood of ψ = 0. Clearly, Qψ=0 = QF is the quotient of the Fermat quintic, while Qψ 6=0

is a deformation of the Fermat quotient that breaks part of its discrete isometry group. In

particular, note that for small non-zero values of ψ

• The first massive level µ1(QF ) = 4 splits into two pairs of eigenvalues.

• The second massive level µ2(QF ) = 2 remains two-fold degenerate.

In this subsection, we will attempt to understand this from the group-theoretical perspec-

tive.

As discussed in 5.4, the multiplicities of the eigenvalues on the quotient Qψ = Q̃ψ/(Z5×
Z5) are really determined by the representation theory of the symmetry group of the

covering space. We have to distinguish two cases.
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d 1 4 5 6 20 24 30 40 48 60

nd 4 4 4 2 8 2 8 4 2 2

dimZ5×Z5
d 1 0 1 2 0 4 2 0 0 4

Table 7: Number nd of distinct irreducible representations of Aut(Q̃ψ 6=0) in complex dimension

d. We also list the dimension dimZ5×Z5

d of the Z5 × Z5-invariant subspace for each representation.

Note that it turns out to only depend on the dimension d of the representation.

ψ = 0: This is the case of the Fermat quintic, whose symmetries we already discussed in

4.3,

Aut
(
Q̃ψ=0

)
= Aut

(
Q̃F
)

=
(
S5 × Z2

)
⋉
(
Z5

)4
. (5.34)

The irreducible representations of Aut
(
Q̃F
)

were presented in 5.

ψ 6= 0: In this case, the invariance of the
∏
zi monomial gives one further constraint on

the (Z5)
4 phase rotations. In other words, turning on ψ breaks the phase rotation

symmetry to (Z5)
3. The remaining symmetry group is19

Aut
(
Q̃ψ 6=0

)
=
(
S5 × Z2

)
⋉
(
Z5

)3
. (5.35)

The irreducible representations of Aut
(
Q̃ψ 6=0

)
are given in 7. Note that, by con-

struction, this group is a proper subgroup of the full symmetry group, both of which

containing the free Z5 × Z5 action. That is,

Aut
(
Q̃ψ=0

)
⊃ Aut

(
Q̃ψ 6=0

)
⊃ Z5 × Z5. (5.36)

As one turns on the ψ-deformation, the eigenvalues must split according to the group-

theoretical branching rules. We list these in 8.

Finally, we are really interested in the eigenvalues on the quotient Qψ, which means

that one must restrict to the Z5 × Z5-invariants of each representation. For the Fermat

quintic, we listed the number and the dimension, dimZ5×Z5
d , of these invariants in 5. We list

the analogous information for the Z5 ×Z5-invariants within the irreducible representations

of Aut(Q̃ψ 6=0) in 7. This allows us to compute the splitting of the eigenvalues on the quotient

Qψ. However, just knowing the multiplicities turns out to be not quite enough since

same-dimensional but different irreducible representations can branch in different ways. In

particular, the first massive level on Qψ=0 comes from a 60-dimensional representation of

Q̃ψ=0, which can branch in two ways according to 8. However, since we have seen in 13

that the eigenvalues do branch, this 60-dimensional representation must be of the type 602.

To summarize, these group theoretical considerations are completely compatible with

the observed branching of the eigenvalues under the complex structure deformation by ψ.

19Since we chose ψ to be real, the complex conjugation Z2 remains unbroken.
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Aut(Q̃F ) ⊃ Aut(Q̃ψ 6=0)

1 −→ 1

2 −→ 1 ⊕ 1

4 −→ 4

5 −→ 5

6 −→ 6

8 −→ 4 ⊕ 4

10 −→ 5 ⊕ 5

12 −→ 6 ⊕ 6

Aut
(
Q̃F
)

⊃ Aut
(
Q̃ψ 6=0

)

20 −→ 20

30 −→ 30

401 −→ 40

402 −→ 20 ⊕ 20

601 −→ 60

602 −→ 30 ⊕ 30

80 −→ 40 ⊕ 40

120 −→ 48 ⊕ 48⊕ 24

Table 8: Branching rules for the decomposition of the irreducible representations of Aut(Q̃F ) into

the irreducible representations of its subgroup Aut(Q̃ψ 6=0). Note that there are always numerous

distinct representations in each dimension, see 5 and 7. In particular, in dimension 60 there are 10

irreps of Aut(Q̃F ), which we denote by 60
1
, that remain irreducible under Aut(Q̃ψ 6=0) and 8 irreps,

denoted by 60
2
, that branch into two distinct 30-dimensional irreducible representations.

The low-lying eigenvalues of the scalar Laplacian on Qψ split as

Z5 × Z5

invariants
⊂ Aut

(
Q̃ψ=0

)

irreps

Aut
(
Q̃ψ 6=0

)

irreps
⊃ Z5 × Z5

invariants

µ0

(
Qψ=0

)
= 1 ⊂ 1 //1 ⊃ µ0

(
Qψ 6=0

)
= 1

30 ⊃ µ2

(
Qψ 6=0

)
= 2

µ1

(
Qψ=0

)
= 4 ⊂ 602

11dddddddddddddddd

--ZZZZZZZZZZZZZZZZ ⊕
30 ⊃ µ1

(
Qψ 6=0

)
= 2

µ2

(
Qψ=0

)
= 2 ⊂ 30 //30 ⊃ µ3

(
Qψ 6=0

)
= 2.

(5.37)

5.7 Another family

Finally, let us consider another family of complex structure moduli. First, we deform the

Fermat quintic to a generic Z5 ×Z5 invariant polynomial; that is, switch on all coefficients

in eq. (5.2). Then restrict to the real one-parameter family of covering spaces defined by

Q̃ϕ =
∑

z5
i + ϕ

∏
z5
i + iϕ

(
z3
0z1z4 + cyc

)

+ (1 − i)ϕ
(
z2
0z1z

2
2 + cyc

)
− (1 − 2i)ϕ

(
z2
0z

2
1z3 + cyc

)

− (2 − i)ϕ
(
z3
0z2z3 + cyc

)
(5.38)

and form the quotient spaces

Qϕ = Q̃ϕ

/(
Z5 × Z5

)
. (5.39)
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Figure 14: Spectrum of the scalar Laplace operator on the real 1-parameter family Qϕ of quintic

quotients. The metric is computed at degree kh = 10, nh = 406,250 and the Laplace operator

evaluated at kφ = 10 and nφ = 50,000 points.

For generic values of ϕ, this breaks all symmetries of the Fermat quintic except for the free

Z5×Z5 that we are dividing out. Consequently, we expect no degeneracies in the spectrum

of the Laplace-Beltrami operator. In 14, we plot the spectrum of ∆ and, indeed, observe

that the degeneracies of the eigenvalues on the Fermat quintic Qϕ=0 are broken as ϕ is

turned on.

6. A heterotic standard model manifold

In this last section, we will compute the spectrum of the Laplace-Beltrami operator on

the torus-fibered Calabi-Yau threefold X with π1(X) = Z3 × Z3 that was used in [50] to

construct a heterotic standard model. The threefold X is most easily described in terms

of its universal cover X̃ , which is the complete intersection

X̃ =
{
P̃ (x, t, y) = 0 = R̃(x, t, y)

}
⊂ P2

[x0:x1:x2]
×P1

[t0:t1] ×P2
[y0:y1:y2]

(6.1)
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defined by the degree-(3, 1, 0) and (0, 1, 3) polynomials

P̃ (x, t, y) = t0

(
x3

0 + x3
1 + x3

2 + λ1x0x1x2

)
+ t1λ3

(
x2

0x2 + x2
1x0 + x2

2x1

)

R̃(x, t, y) = t1

(
y3
0 + y3

1 + y3
2 + λ2y0y1y2

)
+ t0

(
y2
0y1 + y2

1y2 + y2
2y0

)
.

(6.2)

Note that λ1, λ2, λ3 ∈ C end up parametrizing the complex structure of X. For generic

λi, the two maps

γ1 :





[x0 : x1 : x2] 7→ [x0 : ωx1 : ω2x2]

[t0 : t1] 7→ [t0 : ωt1]

[y0 : y1 : y2] 7→ [y0 : ωy1 : ω2y2]

(6.3a)

and

γ2 :





[x0 : x1 : x2] 7→ [x1 : x2 : x0]

[t0 : t1] 7→ [t0 : t1]

[y0 : y1 : y2] 7→ [y1 : y2 : y0]

(6.3b)

generate a free Z3 × Z3 group action on X̃. Hence, the quotient

X = X̃
/(

Z3 × Z3

)
(6.4)

is a smooth Calabi-Yau threefold. In addition to the h2,1(X) = 3 complex structure moduli

of X, there are also h1,1(X) = 3 Kähler moduli. The Kähler class on the algebraic variety

X is determined by a line bundle L whose first Chern class is represented by the Kähler

class,

c1(L) = [ωX ] ∈ H1,1(X,Z) = H1,1(X,C) ∩H2(X,Z). (6.5)

Pulling back to the covering space with the quotient map q, the Kähler class is equivalently

encoded by an equivariant20 line bundle

q∗
(
L
)

= O eX(a1, b, a2), (6.6)

which is determined by some a1, b, a2 ∈ Z>0. Note that, by definition, the sections of

O eX
(a1, b, a2) are the homogeneous polynomials in x, t, and y of multidegree (a1, b, a2).

We now want to compute the Calabi-Yau metric on the quotient X using Donaldson’s

algorithm. However, as discussed in detail in the previous section, we will formulate every-

thing in terms of Z3 × Z3-invariant data on the covering space X̃ . First, one has to pick a

multidegree

kh =
(
a1, b, a2

)
∈
(
Z>0

)3
, a1 + a2 ≡ 0 mod 3 (6.7)

determining the Kähler class of the metric. Then one has to find a basis

span
{
sα
∣∣α = 0, . . . , N(kh) − 1

}
=

= C[x0, x1, x2, t0, t1, y0, y1, y2]
Z3×Z3
kh

/〈
R̃(x, t, y), P̃ (x, t, y)

〉
(6.8)

20As was shown in [42, 40], equivariance requires a1 + a2 ≡ 0 mod 3. We will always use the equivariant

action specified by eqns. (6.3a) and (6.3b).
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for the invariant sections of O eX(a1, b, a2) modulo the complete intersection equations, as

described in detail in [40]. This is all the data needed to apply Donaldson’s algorithm and

compute the approximate Calabi-Yau metric. Note that, since we always normalize the

volume to unity, the exact Calabi-Yau metric only depends on the ray Qkh but not on the

“radial” distance gcd(a1, b, a2). However, the number of sections N(kh) and, therefore, the

number of parameters in the matrix hαβ, does depend on kh explicitly. Going from kh to

2kh, 3kh, . . . increases the number of parameters and subsequently improves the accuracy

of the Calabi-Yau metric computed through Donaldson’s algorithm.

6.1 The spectrum of the Laplacian on X

Having determined the metric, we now turn towards the spectrum of the Laplace-Beltrami

operator. We do this again by computing the matrix elements of the Laplacian on the

covering in an approximate basis of Z3 × Z3-invariant functions, completely analogous to

5.1. To specify the truncated space of invariant functions on X̃, fix a multidegree kφ
proportional to kh; that is,

kφ = (kφ1, kφ2, kφ3) ∈ Qkh ∩
(
Z≥0

)3
. (6.9)

Then pick a basis
{
sα
∣∣α = 0, . . . , N(kφ)− 1

}
of degree-kφ homogeneous, Z3 × Z3-invariant

polynomials. These define a finite-dimensional space of invariant functions on X̃ as

FZ3×Z3
kφ

=

{
sαs̄β̄(∑ |xi|2

)kφ1
(∑ |ti|2

)kφ2
(∑ |yi|2

)kφ3

∣∣∣∣∣ α, β̄ = 0, . . . , N(kφ) − 1

}
. (6.10)

By computing the matrix elements of the Laplacian and solving the (generalized) matrix

eigenvalue problem, we obtain the eigenvalues λZ3×Z3
n of the Laplacian on the covering

space X̃ acting on Z3 × Z3-invariant functions. These are identical to the eigenvalues of

the Laplacian on X, but with volume

Vol(X) =
1

|Z3 × Z3|
Vol(X̃). (6.11)

In the computation on X̃ we normalized the volume to unity. Hence, after rescaling the

volume of X back to one, the eigenvalues of the scalar Laplacian on X are

λn =
λZ3×Z3
n

3
√

9
. (6.12)

In 15, we compute the spectrum of the Laplace-Beltrami operator on X at two different

points in the Kähler moduli space but with the same complex structure. Recall that we

always normalize the volume, corresponding to the “radial” distance in the Kähler moduli

space, to unity. The non-trivial Kähler moduli are the “angular” directions in the Kähler

cone, and we consider the two different rays Q · (2, 1, 1) and Q · (2, 2, 1). As expected, the

actual eigenvalues do depend on the Kähler moduli, as is evident from 15.

Furthermore, note that there appear to be no multiplicities in the spectrum. At first

sight, this might be a surprise to the cognoscente, as there is a residual symmetry. By
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Figure 15: Eigenvalues of the scalar Laplace operator on the Z3 × Z3-threefold X with complex

structure λ1 = 0 = λ2, λ3 = 1 and at two distinct points in the Kähler moduli space. The metric

is computed at degree kh = (6, 3, 3) and nh = 170,560 points as well as degree kh = (6, 6, 3) and

nh = 290,440 points, corresponding to the two different Kähler moduli. The matrix elements of

the scalar Laplacian are always evaluated on nφ = 500,000 points. The blue pluses and crosses,

corresponding in each case to kφ with the largest radial distance, are the highest precision eigenvalues

for the two metrics.

construction [42], the covering space X̃ comes with a (Z3)
4 group action of which only a

Z3 × Z3 subgroup acts freely and can be divided out to obtainX. The remaining generators

are

γ3 :





[x0 : x1 : x2] 7→ [x1 : x2 : x0]

[t0 : t1] 7→ [t0 : t1]

[y0 : y1 : y2] 7→ [y0 : y1 : y2]

(6.13a)

and

γ4 :





[x0 : x1 : x2] 7→ [x0 : x1 : x2]

[t0 : t1] 7→ [t0 : t1]

[y0 : y1 : y2] 7→ [y1 : y2 : y0]

(6.13b)

in addition to γ1 and γ2, see eqns. (6.3a) and (6.3b). Moreover, we used the point λ1 = 0 =

λ2, λ3 = 1 where the polynomials eq. (6.2) are also invariant under complex conjugation.
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Aut(X̃)-Rep. ρ1, . . . , ρ36 ρ37, . . . , ρ54 ρ55, . . . , ρ81

dim(ρ) 1 1 2

dim
(
ρZ3×Z3

)
0 1 0

Table 9: Number nd of distinct irreducible representations of Aut(X̃) in complex dimension d. We

also list the dimension dimZ3×Z3

d of the Z3 × Z3-invariant subspace for each representation.

Hence, the symmetry group on the covering space is

Aut(X̃) = Z2 ⋉
(
Z3

)4
= D6 ×

(
Z3

)3
. (6.14)

To understand the latter identity, note the Z2 action in the semidirect product:

• Complex conjugation commutes with γ2, γ3, and γ4.

• Complex conjugation does not commute with γ1, but satisfies

γ1

(
[x̄0 : x̄1 : x̄2], [t̄0 : t̄1], [ȳ0, ȳ1, ȳ2]

)
= γ2

1

(
[x0 : x1 : x2], [t0 : t1], [y0, y1, y2]

)
. (6.15)

Hence, γ1 together with complex conjugation generate D6, the dihedral group with

6 elements.

The group Aut(X̃) is of order 162 = 6×33 and has one- and two-dimensional representations

due to the D6 factor. As discussed previously, the surviving eigenfunctions on the quotient

X are the Z3 × Z3-invariant eigenfunctions on the covering space X̃. Hence, we have to

determine the subspace invariant under the freely acting Z3 × Z3 inside of Aut(X̃). We

list all this data in 9. We find that all the multiplicities on X̃ are, indeed, one.

7. The sound of space-time

7.1 Kaluza-Klein modes of the graviton

Consider a 10-dimensional spacetime of the form R3,1 × Y , where Y is some real, compact

6-dimensional Calabi-Yau manifold. Since Y is compact, there is a scale associated with it.

Let us agree on a unit of length L such that Vol(Y ) = 1 ·L6. The gravitational interactions

in this world are complicated, but have two easy limiting cases. First, if the separation r

of two probe masses M1 and M2 is large, then the gravitational potential between them is

given by Newton’s law

V (r ≫ L) = −G4
M1M2

r
. (7.1)

In the other extreme, when r is very small, the potential becomes the Green-Schwarz-

Witten law

V (r ≪ L) = −G10
M1M2

r7
. (7.2)

By dimensional analysis

G4 ∼ G10

L6
, (7.3)
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with a constant of proportionality independent of Y to be determined below. In-between

these two extremal limits for the separation r, the gravitational potential is a complicated

interpolation between eq. (7.1) and eq. (7.2).

There are two alternative ways of describing fields on R3,1×Y . One can either directly

use 10-dimensional field theory, or work with an infinite tower of massive Kaluza-Klein fields

depending on R3,1 only. Both methods are equivalent, but for the purposes of this paper

we only consider the Kaluza-Klein compactification [51 – 53]. In this approach, the single

10-dimensional massless graviton g
(10D)
AB , A,B = 0, . . . , 9 is decomposed into 4-dimensional

gravitons, vectors, and scalars. For simplicity, let us only consider 4-dimensional gravity,

that is, 4-d fields with symmetrized indices a, b = 0, . . . , 3. Then

g
(10D)
ab

(
x0, . . . , x3, y1, . . . , y6) =

∞∑

n=0

φn(y1, . . . , y6) · g(4D),n
ab (x0, . . . , x3), (7.4)

where the (y1, . . . , y6) ∈ Y -dependence of the 10-dimensional metric is now encoded in a

basis of functions φn ∈ C∞(Y,R). The most useful such basis consists of the solutions to

the equations of motion on Y , that is, the eigenfunctions of the scalar Laplace operator

∆Y φn(y1, . . . , y6) = λnφn(y1, . . . , y6), λn ≤ λn+1. (7.5)

The corresponding 4-dimensional Lagrangian contains the infinite tower of fields g
(4D),n
ab of

mass

mn =
√
λn, n = 0, . . . ,∞. (7.6)

As discussed previously, there is a unique zero mode λ0 = 0 leading to a single massless

graviton in 4 dimensions. The gravitational potential is then the sum of the potential due

to the massless graviton plus the Yukawa-interaction of the massive modes,

V (r) = −G4
M1M2

r

∞∑

n=0

e−mnr = −G4
M1M2

r

(
1 +

∞∑

n=1

e−mnr

)
. (7.7)

At distance scales r ≫ 1
m1

, only the massless graviton propagates. This expected behaviour

is clearly visible in the r ≫ 1
m1

limit of eq. (7.7), and one immediately recovers eq. (7.1).

At distance scales r ≪ 1
m1

, on the other hand, the massless graviton as well as the infinite

tower of massive spin-2 fields propagate. The corresponding asymptotic behaviour of the

gravitational potential is less obvious. However, note that the asymptotic growth

lim
n→∞

λ3
n

n
= 384π3L−6 ⇔ mn

n→∞
−−−−−→ 2

6
√

6
√
π n1/6L−1 (7.8)

of the Kaluza-Klein masses is known from Weyl’s formula, see 3.3. Hence, the r ≪ 1
m1

limit of eq. (7.7) is

V (r) = −G4
M1M2

r

∞∑

n=0

e−mnr

−→ ∼ −G4
M1M2

r

∫ ∞

n=0
e−2 6√6

√
πn1/6r/L dn = − 15G4L

6

8π3︸ ︷︷ ︸
=G10

M1M2

r7
.

(7.9)
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Figure 16: The gravitational potential V (r) computed from eq. (7.7) on R3,1 × Q̃F , where Q̃F is

the Fermat quintic with unit volume, Vol(Q̃F ) = 1 · L6. The Kaluza-Klein masses mn =
√
λn are

computed using the numerical results for λn given in 4.2.

Again, this matches the expected behaviour eq. (7.2).

The purpose of this section is to fill the gap between the extremal limits and determine

the gravitational potential at distances r ≃ L. This explicitly depends on the details of

the internal Calabi-Yau threefold Y , and there is no way around solving eq. (7.5). The

eigenvalues λn and corresponding eigenfunctions φn depend on the Calabi-Yau metric and

can only be computed numerically. We have presented a detailed algorithm for calculating

the spectrum of ∆ in this paper, and given the results for a number of different Calabi-Yau

threefolds. As an example, let us compute the gravitational potential V (r) derived from

the numerical eigenvalues of the scalar Laplace operator on the Fermat quintic discussed

in 4.2. The result is plotted in 16.

7.2 Spectral gap

As is evident from 16, deviations from the pure 1
r (green line) and 1

r7
(red line) potentials

occur for r in the region where these gravitational potentials have a similar magnitude. In

fact, these curves intersect at

G4
M1M2

r0
=

15G4L
6

8π3

M1M2

r70
⇔ r0 =

6

√
15

8π3
L ≈ 0.627L. (7.10)
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Note that this point of intersection is independent of the Calabi-Yau manifold and its geom-

etry. As will become clear below, for Calabi-Yau threefolds which are relatively “round”,

such as the Fermat quintic, r0 is a good estimate for the point of substantial deviation from

the 1
r potential. However, for geometries that are stretched or develop a throat in at least

one direction, this deviation point is best determined by another scale, in principle inde-

pendent of the volume of the internal space. This other scale is the mass m1 of the lightest

Kaluza-Klein mode21, see eq. (7.7). For such manifolds, the spectral gap22 λ1 and, hence,

the mass m1 becomes smaller. Eventually, the manifold may be sufficiently elongated that
1
m1

≫ r0. In this case 1
m1

becomes the best estimate of the point of deviation from the 1
r

potential.

Of course, both the volume and λ1 = m2
1 are determined by the geometry of the

internal Calabi-Yau manifold. However, what geometric property really determines the

spectral gap λ1? In fact, this is determined by the “diameter” of the manifold. Recall that

the diameter D is defined to be the largest separation of any two points, as measured by the

shortest geodesic between them. Then, on an arbitrary real d-dimensional manifold with

non-negative scalar curvature23, the spectral gap is essentially determined by the diameter

via [55 – 57]

π2

D2
≤ λ1 ≤ 2d(d+ 4)

D2
⇔ π

D
≤ m1 ≤

√
2d(d + 4)

D
. (7.13)

Clearly, in a compactification where all internal directions are essentially of equal size, the

diameter is of the order of 1 · L. However, as soon as there is even one elongated internal

direction or one long throat/spike develops, the diameter can be very large. Hence, the

spectral gap becomes very small and deviations from 1
r gravity appear for relatively large

values of r ∼ 1
m1

.

The definition of the diameter D is very impractical if one wants to explicitly calculate

it, since this would require global knowledge about the shortest geodesics. However, to

get a rough estimate of D, one can reverse the inequalities eq. (7.13) and then use the

numerically computed value for λ1. For example, on the Fermat quintic our numerical

21The leading order correction to the gravitational potential is often [54, 49] parametrized by the lowest

Kaluza-Klein mass m1 and its multiplicity µ1 as

V (r) ≈ −G4
M1M2

r

`
1 + µ1e

−m1r
´
. (7.11)

While this works well for symmetric spaces like spheres and tori with their large multiplicities and widely-

separated eigenvalues, there are two issues when dealing with more general manifolds:

• The multiplicity is caused by symmetries, and tiny non-symmetric deformations can (and will) make

the eigenvalues non-degenerate (see 5).

• The separation between the zero mode and the first massive mode is, in general, much larger than

the separation between the first and second mode. For example, on the non-symmetric “random

quintic” Calabi-Yau threefold in 4.1,

m0 = 0, m1 ≈ 5.95, m2 ≈ 6.00. (7.12)

22The first massive eigenvalue of the scalar Laplacian, λ1, is also called the spectral gap since it is the

gap between the unique zero mode λ0 = 0 and the first massive mode.
23In particular, a Calabi-Yau d

2
-fold.
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computation in 4.3 yielded λ1 ≈ 41.1. Therefore, the diameter must be in the range

0.490 ≈ π√
λ1

≤ D ≤
√

2 · 6(6 + 4)√
λ1

≈ 1.71. (7.14)

Thus, computing the value of λ1 numerically on a Calabi-Yau threefold for specific values

of its moduli gives us direct information about the “shape” of the manifold; information

that would be hard to obtain by direct calculation of the diameter D. For example, it

follows from eq. (7.14) that the Fermat quintic is relatively “round”.
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A. Spectrum of the Laplacian on projective space

In this Appendix, we compute the lowest eigenvalue of the Laplace operator on P3 using

the rescaled Fubini-Study Kähler potential eq. (3.4). To do this, go to the coordinate patch

where z0 = 1 and use z1, z2, z3 as local coordinates. We find that

gı̄j =
3
√

6π
(
1 + |z1|2 + |z2|2 + |z3|2

)



1 + |z1|2 z2z̄1 z3z̄1
z1z̄2 1 + |z2|2 z3z̄2
z1z̄3 z2z̄3 1 + |z3|2


 ,

det
(
gī
)

=
6

(
1 + |z1|2 + |z2|2 + |z3|2

)4
π3

(A.1)

and, hence,

∆ = 2
1

det(g)

(
∂ ı̄g

ı̄j det(g)∂i + ∂jg
ı̄j det(g)∂ ̄

)
. (A.2)

One can now compute the eigenvalue corresponding to the eigenfunction φ1,1 in eq. (3.15).

We find that

∆φ1,1 = 2
1

det(g)

(
∂ ı̄g

ı̄j det(g)∂i + ∂jg
ı̄j det(g)∂ ̄

) z̄1
1 + |z1|2 + |z2|2 + |z3|2

=

(
16π
3
√

6

)
z̄1

1 + |z1|2 + |z2|2 + |z3|2
.

(A.3)

Hence, φ1,1 is indeed an eigenfunction of ∆ with eigenvalue

λ1 =
16π
3
√

6
=

4π
3
√

6
· 1 · (1 + 3). (A.4)

Hence, the numerical coefficient in eq. (3.6) is indeed the correct one for our volume nor-

malization VolK(P3) = 1.
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B. Semidirect products

Let G and N be two groups, and let

ψ : G→ Aut(N) (B.1)

be a map from G to the automorphisms of N . The semi-direct product

G ψ⋉N =
{
(n, g)

∣∣∣ n ∈ N, g ∈ G
}

(B.2)

is defined to be the group consisting of pairs (n, g) with the group action

(n1, g1) · (n2, g2) =
(
n1 · ψ(g1)(n2), g1 · g2

)
. (B.3)

Usually, one just writes G ⋉ N with the map ψ implied but not explicitly named. Note

that G is a subgroup and N is a normal subgroup of the semidirect product.

For example, consider the semidirect product with G = S5 and N = (Z5)
4 used in 4.3.

These two groups are acting on five homogeneous via permutations24 and phase rotations

(
(n1, n2, n3, n4), [z0, z1, z2, z3, z4]

)
7→
[
z0, z1e

2πin1
5 , z2e

2πin2
5 , z3e

2πin3
5 , z4e

2πin4
5
]
, (B.4)

respectively. The two group actions do not commute, and, therefore, the total symmetry

group is not simply the product S5 × (Z5)
4. The “non-commutativity” between S5 and

(Z5)
4 is encoded in a map

ψ : S5 → Aut
(
(Z5)

4
)
, σ 7→

(
~n 7→ σ−1 ◦ ~n ◦ σ

)
. (B.5)

To be completely explicit, note that the permutation group S5 is generated by the cyclic

permutation c and a transposition t, acting as

t :
[
z0, z1, z2, z3, z4

]
7→
[
z0, z1, z2, z4, z3

]
,

c :
[
z0, z1, z2, z3, z4

]
7→
[
z1, z2, z3, z4, z0

]
.

(B.6)

The generators 〈c, t〉 = S5 act, via ψ, on (Z5)
4 as

ψ(t) : (Z5)
4 → (Z5)

4, (n1, n2, n3, n4) 7→ (n1, n2, n4, n3)

ψ(c) : (Z5)
4 → (Z5)

4, (n1, n2, n3, n4) 7→ (−n4, n1 − n4, n2 − n4, n3 − n4)
(B.7)

It is straightforward, if tedious, to show that ψ is a group homomorphism and that the

total symmetry group generated by S5 and (Z5)
4 is, in fact, the semidirect product

S5 ψ⋉ (Z5)
4. (B.8)

By the usual abuse of notation, we always drop the subscript ψ in the main part of this

paper.

24S5 is, by definition, the group of permutations of five objects.
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C. Notes on Donaldson’s algorithm on quotients

For explicitness, let us consider the same setup as in 5.1, that is, Q̃ ⊂ P4 is a Z5 × Z5

symmetric quintic and we want to compute the metric on the quotient Q = Q̃
/
(Z5 × Z5).

To fix notation, let us denote the two generators for the character ring of the group by

χ1(g1) = e2πi/5, χ1(g2) = 1,

χ2(g1) = 1, χ2(g2) = e2πi/5.
(C.1)

We consider homogeneous polynomials in degrees kh ∈ 5Z, so there is a linear Z5×Z5 group

action. In eq. (5.8) we determined the invariant polynomials. Now, let us slightly generalize

this result and determine “covariant polynomials” transforming as some character χ of the

group,

p ◦ g(z) = χ(g)p(z) g ∈ Z5 × Z5. (C.2)

These again form a linear space of χ-covariant polynomials, which we denote as

C[z0, z1, z2, z3, z4]
χ
kh

=
{
p(z)

∣∣∣p ◦ g(z) = χ(g)p(z)
}
. (C.3)

Note that the covariant polynomials do not form a ring, but rather a module over the

invariant ring. Nevertheless, by a slight generalization of the Hironaka decomposition, we

can express the covariants as a direct sum

C[z0, z1, z2, z3, z4]
χ
kh

=

100⊕

i=1

ηχi C[θ1, θ2, θ3, θ4, θ5]kh−deg(ηχ
i ), (C.4)

where the θ1, . . . , θ5 ∈ C[z0, z1, z2, z3, z4]
Z5×Z5 can be taken to be the primary invariants

of the original Hironaka decomposition eq. (5.8) and the “secondary covariants” ηχ1 , . . . ,

ηχ100 are certain χ-covariant polynomials that need to be computed [58]. For example, we

find

ηχ1
1 = z4

0z1 + z4
1z2 + z4

2z3 + z4
3z4 + z4

4z0,

ηχ1
2 = z0z

3
1z3 + z1z

3
2z4 + z2z

3
3z0 + z3z

3
4z1 + z4z

3
0z2, . . .

(C.5)

and

ηχ2
1 = z5

0 + e
2πi
5 z5

1 + e2
2πi
5 z5

2 + e3
2πi
5 z5

3 + e4
2πi
5 z5

4 ,

ηχ2
2 = z0z

3
1z2 + e

2πi
5 z1z

3
2z3 + e2

2πi
5 z2z

3
3z4 + e3

2πi
5 z3z

3
4z0 + e4

2πi
5 z4z

3
0z1, . . . .

(C.6)

Note that we always take the defining quintic polynomial Q̃(z) to be completely25 invariant,

see eq. (5.2). Restricting everything to the hypersurface Q̃(z) = 0, we get homogeneous

polynomials on the Calabi-Yau threefold. We pick bases {sχα} for the χ-covariant polyno-

mials, that is,

χ = 1 : span
{
s1α
}

= C[z0, z1, z2, z3, z4]
Z5×Z5
kh

/〈
Q̃(z)

〉
,

χ 6= 1 : span
{
sχα
}

=
(
C[z0, z1, z2, z3, z4]kh

/〈
Q̃(z)

〉)χ

= C[z0, z1, z2, z3, z4]
χ
kh
.

(C.7)

25If eQ(z) were a χ-covariant polynomial, it would still define a Z5×Z5 invariant Calabi-Yau hypersurface.

Everything in this paper would generalize straightforwardly, so we ignore this possibility to simplify notation.
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We now turn towards computing the metric on the quotient Q or, equivalently, com-

puting the Z5 × Z5-invariant metric on the covering space Q̃ by a variant of Donaldson’s

algorithm. For this, we pick the ansatz

K(z, z̄) =
1

π

χ4
1χ

4
2∑

χ=χ0
1χ

0
2

∑

αβ̄

hχαβ̄sχαs
χ
β (C.8)

for the Calabi-Yau metric. One can think of h as a block-diagonal matrix with blocks

labelled by the characters χ. The T -operator is likewise block-diagonal, and therefore one

obtains a balanced metric as the fixed point of the iteration

hχαβ̄n −→ hχαβ̄n+1 = T
(
hχαβ̄n

)−1
. (C.9)

Note that this fixed point is the same26 as what one would obtain from Donaldson’s al-

gorithm on the covering space Q̃ (without using any symmetry). Only now the basis of

sections is such that the impact of the Z5 × Z5 symmetry is clearly visible: h is block-

diagonal with blocks labelled by the characters χ.

As usual, the balanced metrics are better and better approximations to the Calabi-

Yau metric as one increases the degree kh. We find that this method of computing the

Calabi-Yau metric on the quotient Q is the most effective.
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